935 resultados para proactive traffic management
Resumo:
The anticipated growth of air traffic worldwide requires enhanced Air Traffic Management (ATM) technologies and procedures to increase the system capacity, efficiency, and resilience, while reducing environmental impact and maintaining operational safety. To deal with these challenges, new automation and information exchange capabilities are being developed through different modernisation initiatives toward a new global operational concept called Trajectory Based Operations (TBO), in which aircraft trajectory information becomes the cornerstone of advanced ATM applications. This transformation will lead to higher levels of system complexity requiring enhanced Decision Support Tools (DST) to aid humans in the decision making processes. These will rely on accurate predicted aircraft trajectories, provided by advanced Trajectory Predictors (TP). The trajectory prediction process is subject to stochastic effects that introduce uncertainty into the predictions. Regardless of the assumptions that define the aircraft motion model underpinning the TP, deviations between predicted and actual trajectories are unavoidable. This thesis proposes an innovative method to characterise the uncertainty associated with a trajectory prediction based on the mathematical theory of Polynomial Chaos Expansions (PCE). Assuming univariate PCEs of the trajectory prediction inputs, the method describes how to generate multivariate PCEs of the prediction outputs that quantify their associated uncertainty. Arbitrary PCE (aPCE) was chosen because it allows a higher degree of flexibility to model input uncertainty. The obtained polynomial description can be used in subsequent prediction sensitivity analyses thanks to the relationship between polynomial coefficients and Sobol indices. The Sobol indices enable ranking the input parameters according to their influence on trajectory prediction uncertainty. The applicability of the aPCE-based uncertainty quantification detailed herein is analysed through a study case. This study case represents a typical aircraft trajectory prediction problem in ATM, in which uncertain parameters regarding aircraft performance, aircraft intent description, weather forecast, and initial conditions are considered simultaneously. Numerical results are compared to those obtained from a Monte Carlo simulation, demonstrating the advantages of the proposed method. The thesis includes two examples of DSTs (Demand and Capacity Balancing tool, and Arrival Manager) to illustrate the potential benefits of exploiting the proposed uncertainty quantification method.
Resumo:
Construction is one of the most hazardous industries due to its dynamic, temporary, and decentralized nature. The Hong Kong Commissioner for Labor identifies worker behavior as the root cause of construction accidents. Behavior-based safety (BBS) is one effective approach in managing employee safety issues. However, there is little research on the application of BBS in the construction industry. This research proposes an extension of the BBS approach, proactive behavior-based safety (PBBS), to improve construction safety. PBBS integrates the theory of BBS with the technology of Proactive Construction Management System (PCMS). The innovations of PBBS are: (1) automatically monitoring location-based behaviors; (2)quantitatively measuring safety performance; (3) investigating potential causes of unsafe behaviors; and (4) improving the efficiency of safety management. A pilot study of a Hong Kong construction site practicing PBBS was conducted. The experiment results showed that PBBS performed well on construction accident prevention and the Safety Index (SI) of the two project teams, with increased improvements by 36.07% and 44.70% respectively. It is concluded that PBBS is effective and adaptable to construction industry.
Resumo:
A queue manager (QM) is a core traffic management (TM) function used to provide per-flow queuing in access andmetro networks; however current designs have limited scalability. An on-demand QM (OD-QM) which is part of a new modular field-programmable gate-array (FPGA)-based TM is presented that dynamically maps active flows to the available physical resources; its scalability is derived from exploiting the observation that there are only a few hundred active flows in a high speed network. Simulations with real traffic show that it is a scalable, cost-effective approach that enhances per-flow queuing performance, thereby allowing per-flow QM without the need for extra external memory at speeds up to 10 Gbps. It utilizes 2.3%–16.3% of a Xilinx XC5VSX50t FPGA and works at 111 MHz.
Resumo:
Traffic Management system (TMS) comprises four major sub systems: The Network Database Management system for information to the passengers, Transit Facility Management System for service, planning, and scheduling vehicle and crews, Congestion Management System for traffic forecasting and planning, Safety Management System concerned with safety aspects of passengers and Environment. This work has opened a rather wide frame work of model structures for application on traffic. The facets of these theories are so wide that it seems impossible to present all necessary models in this work. However it could be deduced from the study that the best Traffic Management System is that whichis realistic in all aspects is easy to understand is easy to apply As it is practically difficult to device an ideal fool—proof model, the attempt here has been to make some progress-in that direction.
Resumo:
La gestión del tráfico aéreo (Air Traffic Management, ATM) está experimentando un cambio de paradigma hacia las denominadas operaciones basadas trayectoria. Bajo dicho paradigma se modifica el papel de los controladores de tráfico aéreo desde una operativa basada su intervención táctica continuada hacia una labor de supervisión a más largo plazo. Esto se apoya en la creciente confianza en las soluciones aportadas por las herramientas automatizadas de soporte a la decisión más modernas. Para dar soporte a este concepto, se precisa una importante inversión para el desarrollo, junto con la adquisición de nuevos equipos en tierra y embarcados, que permitan la sincronización precisa de la visión de la trayectoria, basada en el intercambio de información entre ambos actores. Durante los últimos 30 a 40 años las aerolíneas han generado uno de los menores retornos de la inversión de entre todas las industrias. Sin beneficios tangibles, la industria aérea tiene dificultades para atraer el capital requerido para su modernización, lo que retrasa la implantación de dichas mejoras. Esta tesis tiene como objetivo responder a la pregunta de si las capacidades actualmente instaladas en las aeronaves comerciales se pueden aplicar para lograr la sincronización de la trayectoria con el nivel de calidad requerido. Además, se analiza en ella si, conjuntamente con mejoras en las herramientas de predicción trayectorias instaladas en tierra en para facilitar la gestión de las arribadas, dichas capacidades permiten obtener los beneficios esperados en el marco de las operaciones basadas en trayectoria. Esto podría proporcionar un incentivo para futuras actualizaciones de la aviónica que podrían llevar a mejoras adicionales. El concepto operacional propuesto en esta tesis tiene como objetivo permitir que los aviones sean pilotados de una manera consistente con las técnicas actuales de vuelo optimizado. Se permite a las aeronaves que desciendan en el denominado “modo de ángulo de descenso gestionado” (path-managed mode), que es el preferido por la mayoría de las compañías aéreas, debido a que conlleva un reducido consumo de combustible. El problema de este modo es que en él no se controla de forma activa el tiempo de llegada al punto de interés. En nuestro concepto operacional, la incertidumbre temporal se gestiona en mediante de la medición del tiempo en puntos estratégicamente escogidos a lo largo de la trayectoria de la aeronave, y permitiendo la modificación por el control de tierra de la velocidad de la aeronave. Aunque la base del concepto es la gestión de las ordenes de velocidad que se proporcionan al piloto, para ser capaces de operar con los niveles de equipamiento típicos actualmente, dicho concepto también constituye un marco en el que la aviónica más avanzada (por ejemplo, que permita el control por el FMS del tiempo de llegada) puede integrarse de forma natural, una vez que esta tecnología este instalada. Además de gestionar la incertidumbre temporal a través de la medición en múltiples puntos, se intenta reducir dicha incertidumbre al mínimo mediante la mejora de las herramienta de predicción de la trayectoria en tierra. En esta tesis se presenta una novedosa descomposición del proceso de predicción de trayectorias en dos etapas. Dicha descomposición permite integrar adecuadamente los datos de la trayectoria de referencia calculada por el Flight Management System (FMS), disponibles usando Futuro Sistema de Navegación Aérea (FANS), en el sistema de predicción de trayectorias en tierra. FANS es un equipo presente en los aviones comerciales de fuselaje ancho actualmente en la producción, e incluso algunos aviones de fuselaje estrecho pueden tener instalada avionica FANS. Además de informar automáticamente de la posición de la aeronave, FANS permite proporcionar (parte de) la trayectoria de referencia en poder de los FMS, pero la explotación de esta capacidad para la mejora de la predicción de trayectorias no se ha estudiado en profundidad en el pasado. La predicción en dos etapas proporciona una solución adecuada al problema de sincronización de trayectorias aire-tierra dado que permite la sincronización de las dimensiones controladas por el sistema de guiado utilizando la información de la trayectoria de referencia proporcionada mediante FANS, y también facilita la mejora en la predicción de las dimensiones abiertas restantes usado un modelo del guiado que explota los modelos meteorológicos mejorados disponibles en tierra. Este proceso de predicción de la trayectoria de dos etapas se aplicó a una muestra de 438 vuelos reales que realizaron un descenso continuo (sin intervención del controlador) con destino Melbourne. Dichos vuelos son de aeronaves del modelo Boeing 737-800, si bien la metodología descrita es extrapolable a otros tipos de aeronave. El método propuesto de predicción de trayectorias permite una mejora en la desviación estándar del error de la estimación del tiempo de llegada al punto de interés, que es un 30% menor que la que obtiene el FMS. Dicha trayectoria prevista mejorada se puede utilizar para establecer la secuencia de arribadas y para la asignación de las franjas horarias para cada aterrizaje (slots). Sobre la base del slot asignado, se determina un perfil de velocidades que permita cumplir con dicho slot con un impacto mínimo en la eficiencia del vuelo. En la tesis se propone un nuevo algoritmo que determina las velocidades requeridas sin necesidad de un proceso iterativo de búsqueda sobre el sistema de predicción de trayectorias. El algoritmo se basa en una parametrización inteligente del proceso de predicción de la trayectoria, que permite relacionar el tiempo estimado de llegada con una función polinómica. Resolviendo dicho polinomio para el tiempo de llegada deseado, se obtiene de forma natural el perfil de velocidades optimo para cumplir con dicho tiempo de llegada sin comprometer la eficiencia. El diseño de los sistemas de gestión de arribadas propuesto en esta tesis aprovecha la aviónica y los sistemas de comunicación instalados de un modo mucho más eficiente, proporcionando valor añadido para la industria. Por tanto, la solución es compatible con la transición hacia los sistemas de aviónica avanzados que están desarrollándose actualmente. Los beneficios que se obtengan a lo largo de dicha transición son un incentivo para inversiones subsiguientes en la aviónica y en los sistemas de control de tráfico en tierra. ABSTRACT Air traffic management (ATM) is undergoing a paradigm shift towards trajectory based operations where the role of an air traffic controller evolves from that of continuous intervention towards supervision, as decision making is improved based on increased confidence in the solutions provided by advanced automation. To support this concept, significant investment for the development and acquisition of new equipment is required on the ground as well as in the air, to facilitate the high degree of trajectory synchronisation and information exchange required. Over the past 30-40 years the airline industry has generated one of the lowest returns on invested capital among all industries. Without tangible benefits realised, the airline industry may find it difficult to attract the required investment capital and delay acquiring equipment needed to realise the concept of trajectory based operations. In response to these challenges facing the modernisation of ATM, this thesis aims to answer the question whether existing aircraft capabilities can be applied to achieve sufficient trajectory synchronisation and improvements to ground-based trajectory prediction in support of the arrival management process, to realise some of the benefits envisioned under trajectory based operations, and to provide an incentive for further avionics upgrades. The proposed operational concept aims to permit aircraft to operate in a manner consistent with current optimal aircraft operating techniques. It allows aircraft to descend in the fuel efficient path managed mode as preferred by a majority of airlines, with arrival time not actively controlled by the airborne automation. The temporal uncertainty is managed through metering at strategically chosen points along the aircraft’s trajectory with primary use of speed advisories. While the focus is on speed advisories to support all aircraft and different levels of equipage, the concept also constitutes a framework in which advanced avionics as airborne time-of-arrival control can be integrated once this technology is widely available. In addition to managing temporal uncertainty through metering at multiple points, this temporal uncertainty is minimised by improving the supporting trajectory prediction capability. A novel two-stage trajectory prediction process is presented to adequately integrate aircraft trajectory data available through Future Air Navigation Systems (FANS) into the ground-based trajectory predictor. FANS is standard equipment on any wide-body aircraft in production today, and some single-aisle aircraft are easily capable of being fitted with FANS. In addition to automatic position reporting, FANS provides the ability to provide (part of) the reference trajectory held by the aircraft’s Flight Management System (FMS), but this capability has yet been widely overlooked. The two-stage process provides a ‘best of both world’s’ solution to the air-ground synchronisation problem by synchronising with the FMS reference trajectory those dimensions controlled by the guidance mode, and improving on the prediction of the remaining open dimensions by exploiting the high resolution meteorological forecast available to a ground-based system. The two-stage trajectory prediction process was applied to a sample of 438 FANS-equipped Boeing 737-800 flights into Melbourne conducting a continuous descent free from ATC intervention, and can be extrapolated to other types of aircraft. Trajectories predicted through the two-stage approach provided estimated time of arrivals with a 30% reduction in standard deviation of the error compared to estimated time of arrival calculated by the FMS. This improved predicted trajectory can subsequently be used to set the sequence and allocate landing slots. Based on the allocated landing slot, the proposed system calculates a speed schedule for the aircraft to meet this landing slot at minimal flight efficiency impact. A novel algorithm is presented that determines this speed schedule without requiring an iterative process in which multiple calls to a trajectory predictor need to be made. The algorithm is based on parameterisation of the trajectory prediction process, allowing the estimate time of arrival to be represented by a polynomial function of the speed schedule, providing an analytical solution to the speed schedule required to meet a set arrival time. The arrival management solution proposed in this thesis leverages the use of existing avionics and communications systems resulting in new value for industry for current investment. The solution therefore supports a transition concept from mixed equipage towards advanced avionics currently under development. Benefits realised under this transition may provide an incentive for ongoing investment in avionics.
Increase in particle number emissions from motor vehicles due to interruption of steady traffic flow
Resumo:
We assess the increase in particle number emissions from motor vehicles driving at steady speed when forced to stop and accelerate from rest. Considering the example of a signalized pedestrian crossing on a two-way single-lane urban road, we use a complex line source method to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses and show that the total emissions during a red light is significantly higher than during the time when the light remains green. Replacing two cars with one bus increased the emissions by over an order of magnitude. Considering these large differences, we conclude that the importance attached to particle number emissions in traffic management policies be reassessed in the future.
Resumo:
Purpose: In this research we examined, by means of case studies, the mechanisms by which relationships can be managed and by which communication and cooperation can be enhanced in sustainable supply chains. The research was predicated on the contention that the development of a sustainable supply chain depends, in part, on the transfer of knowledge and capabilities from the larger players in the supply chain. Design/Methodology/Approach: The research adopted a triangulated approach in which quantitative data were collected by questionnaire, interviews were conducted to explore and enrich the quantitative data and case studies were undertaken in order to illustrate and validate the findings. Handy‟s (1985) view of organisational culture, Allen & Meyer‟s (1990) concepts of organisational commitment and Van de Ven & Ferry‟s (1980) measures of organisational structuring have been combined into a model to test and explain how collaborative mechanisms can affect supply chain sustainability. Findings: It has been shown that the degree of match and mismatch between organisational culture and structure has an impact on staff‟s commitment level. A sustainable supply chain depends on convergence – that is the match between organisational structuring, organisation culture and organisation commitment. Research Limitations/implications: The study is a proof of concept and three case studies have been used to illustrate the nature of the model developed. Further testing and refinement of the model in practice should be the next step in this research. Practical implications: The concept of relationship management needs to filter down to all levels in the supply chain if participants are to retain commitment and buy-in to the relationship. A sustainable supply chain requires proactive relationship management and the development of an appropriate organisational culture, and trust. By legitimising individuals‟ expectations of the type of culture which is appropriate to their company and empowering employees to address mismatches that may occur a situation can be created whereby the collaborating organisations develop their competences symbiotically and so facilitate a sustainable supply chain. Originality/value: The culture/commitment/structure model developed from three separate strands of management thought has proved to be a powerful tool for analysing collaboration in supply chains and explaining how and why some supply chains are sustainable, and others are not.
Resumo:
Traffic congestion is an increasing problem with high costs in financial, social and personal terms. These costs include psychological and physiological stress, aggressivity and fatigue caused by lengthy delays, and increased likelihood of road crashes. Reliable and accurate traffic information is essential for the development of traffic control and management strategies. Traffic information is mostly gathered from in-road vehicle detectors such as induction loops. Traffic Message Chanel (TMC) service is popular service which wirelessly send traffic information to drivers. Traffic probes have been used in many cities to increase traffic information accuracy. A simulation to estimate the number of probe vehicles required to increase the accuracy of traffic information in Brisbane is proposed. A meso level traffic simulator has been developed to facilitate the identification of the optimal number of probe vehicles required to achieve an acceptable level of traffic reporting accuracy. Our approach to determine the optimal number of probe vehicles required to meet quality of service requirements, is to simulate runs with varying numbers of traffic probes. The simulated traffic represents Brisbane’s typical morning traffic. The road maps used in simulation are Brisbane’s TMC maps complete with speed limits and traffic lights. Experimental results show that that the optimal number of probe vehicles required for providing a useful supplement to TMC (induction loop) data lies between 0.5% and 2.5% of vehicles on the road. With less probes than 0.25%, little additional information is provided, while for more probes than 5%, there is only a negligible affect on accuracy for increasingly many probes on the road. Our findings are consistent with on-going research work on traffic probes, and show the effectiveness of using probe vehicles to supplement induction loops for accurate and timely traffic information.
Resumo:
This paper proposes a novel automated separation management concept in which onboard decision support is integrated within a centralised air traffic separation management system. The onboard decision support system involves a decentralised separation manager that can overrule air traffic management instructions under certain circumstances. This approach allows the advantages of both centralised and decentralised concepts to be combined (and disadvantages of each separation management approach to be mitigated). Simulation studies are used to illustrate the potential benefits of the combined separation management concept.
Resumo:
A composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. Hence, this model was able to quickly quantify the time spent in each segment within the considered zone, as well as the composition and position of the requisite segments based on the vehicle fleet information, which not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bi-directional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. Although the CLSE model is intended to be applied in traffic management and transport analysis systems for the evaluation of exposure, as well as the simulation of vehicle emissions in traffic interrupted microenvironments, the bus station model can also be used for the input of initial source definitions in future dispersion models.
Resumo:
Short-term traffic flow data is characterized by rapid and dramatic fluctuations. It reflects the nature of the frequent congestion in the lane, which shows a strong nonlinear feature. Traffic state estimation based on the data gained by electronic sensors is critical for much intelligent traffic management and the traffic control. In this paper, a solution to freeway traffic estimation in Beijing is proposed using a particle filter, based on macroscopic traffic flow model, which estimates both traffic density and speed.Particle filter is a nonlinear prediction method, which has obvious advantages for traffic flows prediction. However, with the increase of sampling period, the volatility of the traffic state curve will be much dramatic. Therefore, the prediction accuracy will be affected and difficulty of forecasting is raised. In this paper, particle filter model is applied to estimate the short-term traffic flow. Numerical study is conducted based on the Beijing freeway data with the sampling period of 2 min. The relatively high accuracy of the results indicates the superiority of the proposed model.
Resumo:
Future air traffic management concepts often involve the proposal of automated separation management algorithms that replaces human air traffic controllers. This paper proposes a new type of automated separation management algorithm (based on the satisficing approach) that utilizes inter-aircraft communication and a track file manager (or bank of Kalman filters) that is capable of resolving conflicts during periods of communication failure. The proposed separation management algorithm is tested in a range of flight scenarios involving during periods of communication failure, in both simulation and flight test (flight tests were conducted as part of the Smart Skies project). The intention of the conducted flight tests was to investigate the benefits of using inter-aircraft communication to provide an extra layer of safety protection in support air traffic management during periods of failure of the communication network. These benefits were confirmed.
Resumo:
In this research we examined, by means of case studies, the mechanisms by which relationships can be managed and by which communication and cooperation can be enhanced in developing sustainable supply chains. The research was predicated on the contention that the development of a sustainable supply chain depends, in part, on the transfer of knowledge and capabilities from the larger players in the supply chain. A sustainable supply chain requires proactive relationship management and the development of an appropriate organisational culture, and trust. By legitimising individuals’ expectations of the type of culture which is appropriate to their company and empowering employees to address mismatches that may occur, a situation can be created whereby the collaborating organisations develop their competences symbiotically and so facilitate a sustainable supply chain. Effective supply chain management enhances organisation performance and competitiveness through the management of operations across organisational boundaries. Relational contracting approaches facilitate the exchange of information and knowledge and build capacity in the supply chain, thus enhancing its sustainability. Relationship management also provides the conditions necessary for the development of collaborative and cooperative relationships However, often subcontractors and suppliers are not empowered to attend project meetings or to have direct communication with project based staff. With this being a common phenomenon in the construction industry, one might ask: what are the barriers to implementation of relationship management through the supply chain? In other words, the problem addressed in this research is the engagement of the supply chain through relationship management.
Resumo:
Evaluating the safety of different traffic facilities is a complex and crucial task. Microscopic simulation models have been widely used for traffic management but have been largely neglected in traffic safety studies. Micro simulation to study safety is more ethical and accessible than the traditional safety studies, which only assess historical crash data. However, current microscopic models are unable to mimic unsafe driver behavior, as they are based on presumptions of safe driver behavior. This highlights the need for a critical examination of the current microscopic models to determine which components and parameters have an effect on safety indicator reproduction. The question then arises whether these safety indicators are valid indicators of traffic safety. The safety indicators were therefore selected and tested for straight motorway segments in Brisbane, Australia. This test examined the capability of a micro-simulation model and presents a better understanding of micro-simulation models and how such models, in particular car following models can be enriched to present more accurate safety indicators.
Resumo:
The impact of weather on traffic and its behavior is not well studied in literature primarily due to lack of integrated traffic and weather data. Weather can significant effect the traffic and traffic management measures developed for fine weather might not be optimal for adverse weather. Simulation is an efficient tool for analyzing traffic management measures even before their actual implementation. Therefore, in order to develop and test traffic management measures for adverse weather condition we need to first analyze the effect of weather on fundamental traffic parameters and thereafter, calibrate the simulation model parameters in order to simulate the traffic under adverse weather conditions. In this paper we first, analyses the impact of weather on motorway traffic flow and drivers’ behaviour with traffic data from Swiss motorways and weather data from MeteoSuisse. Thereafter, we develop methodology to calibrate a microscopic simulation model with the aim to utilize the simulation model for simulating traffic under adverse weather conditions. Here, study is performed using AIMSUN, a microscopic traffic simulator.