992 resultados para primary reaction
Resumo:
Objective: to investigate the effects of tetrahydrocannabinol; THC on human sperm function in vitro. Design: laboratory analysis of sperm motility with and without exposure to THC using computer assisted semen analysis (CASA) and acrosome reaction by fluoroscein isothiocyanate labelled peanut agglutinin (FITC-PNA) staining. Setting: An ART unit in a tertiary medical centre. Patients: semen was obtained from 78 men attending the Regional Fertility Centre, Belfast. Interventions: Sperm were divided into 90% (the best fertilizing potential used in assisted conception) and 45% (the poorer subpopulation) fractions by density centrifugation and incubated with, or without (controls), tetrahydrocannabinol (THC) at concentrations equivalent to therapeutic (0.032Ã??Ã?¯?Ã??Ã?ÂM) and recreational (4.8 and 0.32Ã??Ã?¯?Ã??Ã?ÂM) plasma levels, at 37Ã??Ã?¯?Ã??Ã?°C for 3 hours. Main outcome measures: Sperm motility, spontaneous and induced acrosome reactions Results: There was a dose-dependent decrease in percentage progressive motility (-21% at 4.8Ã???Ã??Ã?µM, p0.05) in the 90% fraction. The 45% fraction showed a greater decrease in percentage progressive motility (-56% at 4.8Ã???Ã??Ã?µM, p=0.011; -23% at 0.32Ã???Ã??Ã?µM, p= 0.039; and -28% at 0.032Ã???Ã??Ã?µM, p=0.004). A decrease in the straight line velocity; VSL (-10%) and the average path velocity; VAP (-10%) were also observed in the 90% fraction. A significant inhibition (-15% at 4.8Ã???Ã??Ã?µM, p=0.04) in spontaneous acrosome reaction was observed in the 90% fraction. The 45% fraction showed a more marked inhibition [-35% (p
Resumo:
In constant, search for micro/mesoporous materials, gallium phosphates, have attracted continued interest due to the large pore size reported for some of these solids in comparison with analogous aluminum phosphates. However up to now, the porosity of gallium phosphates collapsed upon template removal or exposure to the ambient moisture. In the present work, we describe high-surface thermally stable mesoporous gallium phosphates synthesized from gallium propoxide and PCl3 and different templating agents such as amines (dipropylamine, piperidine and aminopiperidine) and quaternary ammonium salts (C16H33(CH3)3NBr and C16PyCl). These highly reactive precursors have so far not been used as gallium and phosphate sources for the synthesis of gallophosphates. Conceptually, our present synthetic procedure is based on the fast formation of gallium phosphate nanoparticles via the reaction of gallium propoxide with PCl3 and subsequent construction of the porous material with nanoparticles as building blocks. The organization of the gallophosphate nanoparticles in stable porous structures is effected by the templates. Different experimental procedures varying the molar composition of the sol-gel, pH and the pretreatment of gallium precursor were assayed, most of them leading to satisfactory materials in terms of thermal stability and porosity. In this way, a series of gallium phosphates with surface are above 200 m(2) g(-1), and narrow pore size from 3 to 6 nm and remarkable thermal stability (up to 550 degrees C) have been prepared. In some cases, the structure tends to show some periodicity and regularity as determined by XRD. The remarkable stability has allowed us to test the catalytic activity of gallophosphates for the aerobic oxidation of alkylaromatics with notable good results. Our report reopens the interest for gallophosphates in heterogeneous catalysis. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The microkinetics based on density function theory (DFT) calculations is utilized to investigate the reaction mechanism of crotonaldehyde hydrogenation on Pt(111) in the free energy landscape. The dominant reaction channel of each hydrogenation product is identified. Each of them begins with the first surface hydrogenation of the carbonyl oxygen of crotonaldehyde on the surface. A new mechanism, 1,4-addition mechanism generating enols (butenol), which readily tautomerize to saturated aldehydes (butanal), is identified as a primary mechanism to yield saturated aldehydes instead of the 3,4-addition via direct hydrogenation of the ethylenic bond. The calculation results also show that the full hydrogenation product, butylalcohol, mainly stems from the deep hydrogenation of surface open-shell dihydrogenation intermediates. It is found that the apparent barriers of the dominant pathways to yield three final products are similar on P(111), which makes it difficult to achieve a high selectivity to the desired crotyl alcohol (COL).
Resumo:
Out of 2,409 clinical cases analysed over an eight-week period, 199 (8.2 per cent) were of a dermatological nature. Atopic eczema, warts, seborrhoeic eczema and acne vulgaris were encountered most frequently. The reaction to a skin clinic in the general practice, with access to liquid nitrogen, electrocautery and histopathology is described. Treatment of patients is summarized. It is suggested that having a practice skin clinic reduces the rate of hospital referrals by two thirds.
Resumo:
Background: Rapid compensatory arm reactions represent important response strategies following an unexpected loss of balance. While it has been assumed that early corrective actions arise largely from sub-cortical networks, recent findings have prompted speculation about the potential role of cortical involvement. To test the idea that cortical motor regions are involved in early compensatory arm reactions, we used continuous theta burst stimulation (cTBS) to temporarily suppress the hand area of primary motor cortex (M1) in participants prior to evoking upper limb balance reactions in response to whole body perturbation. We hypothesized that following cTBS to the M1 hand area evoked EMG responses in the stimulated hand would be diminished. To isolate balance reactions to the upper limb participants were seated in an elevated tilt-chair while holding a stable handle with both hands. The chair was held vertical by a magnet and was triggered to fall backward unpredictably. To regain balance, participants used the handle to restore upright stability as quickly as possible with both hands. Muscle activity was recorded from proximal and distal muscles of both upper limbs.
Results: Our results revealed an impact of cTBS on the amplitude of the EMG responses in the stimulated hand muscles often manifest as inhibition in the stimulated hand. The change in EMG amplitude was specific to the target hand muscles and occasionally their homologous pairs on the non-stimulated hand with no consistent effects on the remaining more proximal arm muscles.
Conclusions: Present findings offer support for cortical contributions to the control of early compensatory arm reactions following whole-body perturbation.
Resumo:
‘Temporally urgent’ reactions are extremely rapid, spatially precise movements that are evoked following discrete stimuli. The involvement of primary motor cortex (M1) and its relationship to stimulus intensity in such reactions is not well understood. Continuous theta burst stimulation (cTBS) suppresses focal regions of the cortex and can assess the involvement of motor cortex in speed of processing. The primary objective of this study was to explore the involvement of M1 in speed of processing with respect to stimulus intensity. Thirteen healthy young adults participated in this experiment. Behavioral testing consisted of a simple button press using the index finger following median nerve stimulation of the opposite limb, at either high or low stimulus intensity. Reaction time was measured by the onset of electromyographic activity from the first dorsal interosseous (FDI) muscle of each limb. Participants completed a 30 min bout of behavioral testing prior to, and 15 min following, the delivery of cTBS to the motor cortical representation of the right FDI. The effect of cTBS on motor cortex was measured by recording the average of 30 motor evoked potentials (MEPs) just prior to, and 5 min following, cTBS. Paired t-tests revealed that, of thirteen participants, five demonstrated a significant attenuation, three demonstrated a significant facilitation and five demonstrated no significant change in MEP amplitude following cTBS. Of the group that demonstrated attenuated MEPs, there was a biologically significant interaction between stimulus intensity and effect of cTBS on reaction time and amplitude of muscle activation. This study demonstrates the variability of potential outcomes associated with the use of cTBS and further study on the mechanisms that underscore the methodology is required. Importantly, changes in motor cortical excitability may be an important determinant of speed of processing following high intensity stimulation.
Resumo:
Purpose:The aim of this study was to determine whether mutations in mitochondrial DNA play a role in high-pressure primary open-angle glaucoma (OMIM 137760) by analyzing new data from massively parallel sequencing of mitochondrial DNA.
Methods:Glaucoma patients with high-tension primary open-angle glaucoma and ethnically matched and age-matched control subjects without glaucoma were recruited. The entire human mitochondrial genome was amplified in two overlapping fragments by long-range polymerase chain reaction and used as a template for massively parallel sequencing on an Ion Torrent Personal Genome Machine. All variants were confirmed by conventional Sanger sequencing.
Results:Whole-mitochondrial genome sequencing was performed in 32 patients with primary open-angle glaucoma from India (n = 16) and Ireland (n = 16). In 16 of the 32 patients with primary open-angle glaucoma (50% of cases), there were 22 mitochondrial DNA mutations consisting of 7 novel mutations and 8 previously reported disease-associated sequence variants. Eight of 22 (36.4%) of the mitochondrial DNA mutations were in complex I mitochondrial genes.
Conclusion:Massively parallel sequencing using the Ion Torrent Personal Genome Machine with confirmation by Sanger sequencing detected a pathogenic mitochondrial DNA mutation in 50% of the primary open-angle glaucoma cohort. Our findings support the emerging concept that mitochondrial dysfunction results in the development of glaucoma and, more specifically, that complex I defects play a significant role in primary open-angle glaucoma pathogenesis.
Resumo:
The severe combined immunodeficient (SCID) mouse model may be used to evaluate new approaches for the treatment of acute myeloid leukemia (AML). We have previously demonstrated the killing of SCID mouse leukemia initiating cells by in vitro incubation with human GM-CSF fused to Diphtheria toxin (DT-huGM-CSF). In this report, we show that in vivo treatment with DT-huGM-CSF eliminates AML growth in SCID mice. Seven cases of AML were studied. SCID mice were treated intraperitoneally with the maximally tolerated dose of 75 microg/kg/day for 7 days. Antileukemic efficacy was determined at days 40 and 80 after transplantation, by enumerating the percentages of human cells in SCID bone marrow using flow cytometry and short tandem repeat polymerase chain reaction (STR-PCR) analysis. Four out of seven AML cases were sensitive to in vivo treatment with DT-huGM-CSF at both evaluation time points. In three of these cases, elimination of human cells was demonstrated by flow cytometry and STR-PCR. One AML case showed moderate sensitivity for DT-huGM-CSF, and growth of the two remaining AML cases was not influenced by DT-huGM-CSF. Sensitivity was correlated with GM-CSFR expression. Our data show that DT-huGM-CSF can be used in vivo to reduce growth of AML and warrant further development of DT-huGM-CSF for the treatment of human AML.
Resumo:
Maximum production rates ofs and decay kinetics for the hydrated electron, the indolyl neutral radical and the indole triplet state have been obtained in the microsecond, broadband (X > 260 nm) flash photolysis of helium-saturated, neutral aqueous solutions of indole, in the absence and in the presence of the solutes NaBr, BaCl2*2H20 and CdSCV Fluorescence spectra and fluorescence lifetimes have also been obtained in the absence and in the presence of the above solutes, The hydrated electron is produced monophotonically and biphotonically at an apparent maximum rate which is increased by BaCl2*2H20 and decreased by NaBr and CdSOif. The neutral indolyl radical may be produced monophotonically and biphotonically or strictly monophotonically at an apparent maximum rate which is increased by NaBr and CdSO^ and is unaffected by BaCl2*2H20. The indole triplet state is produced monophotonically at a maximum rate which is increased by all solutes. The hydrated electron decays by pseudo first order processes, the neutral indolyl radical decays by second order recombination and the indole triplet state decays by combined first and second order processes. Hydrated electrons are shown to react with H , H2O, indole, Na and Cd"*""1"". No evidence has been found for the reaction of hydrated electrons with Ba . The specific rate of second order neutral indolyl radical recombination is unaffected by NaBr and BaCl2*2H20, and is increased by CdSO^. Specific rates for both first and second order triplet state decay processes are increased by all solutes. While NaBr greatly reduced the fluorescence lifetime and emission band intensity, BaCl2*2H20 and CdSO^ had no effect on these parameters. It is suggested that in solute-free solutions and in those containing BaCl2*2H20 and CdSO^, direct excitation occurs to CTTS states as well as to first excited singlet states. It is further suggested that in solutions containing NaBr, direct excitation to first excited singlet states predominates. This difference serves to explain increased indole triplet state production (by ISC from CTTS states) and unchanged fluorescence lifetimes and emission band intensities in the presence of BaCl2*2H20 and CdSOt^., and increased indole triplet state production (by ISC from S^ states) and decreased fluorescence lifetime and emission band intensity in the presence of NaBr. Evidence is presented for (a) very rapid (tx ^ 1 us) processes involving reactions of the hydrated electron with Na and Cd which compete with the reformation of indole by hydrated electron-indole radical cation recombination, and (b) first and second order indole triplet decay processes involving the conversion of first excited triplet states to vibrationally excited ground singlet states.
Resumo:
Aquaporins (AQPs) are a family of proteins that mediate water transport across cells, but the extent to which they are involved in water transport across endothelial cells of the blood-brain barrier is not clear. Expression of AQP1 and AQP4 in rat brain microvessel endothelial cells was investigated in order to determine whether these isoforms were present and, in particular, to examine the hypothesis that brain endothelial expression of AQPs is dynamic and regulated by astrocytic influences. Reverse-transcriptase-polymerase chain reaction (RT-PCR) and immunocytochemistry showed that AQP1 mRNA and protein are present at very low levels in primary rat brain microvessel endothelial cells, and are up-regulated in passaged cells. Upon passage, endothelial cell expression of mdr1a mRNA is decreased, indicating loss of blood-brain barrier phenotype. In passage 4 endothelial cells, AQP1 mRNA levels are reduced by coculture above rat astrocytes, demonstrating that astrocytic influences are important in maintaining the low levels of AQP1 characteristic of the blood-brain barrier endothelium. Reverse-transcriptase-PCR revealed very low levels of AQP1 mRNA present in the RBE4 rat brain microvessel endothelial cell line, with no expression detected in primary cultures of rat astrocytes or in the C6 rat glioma cell line. In contrast, AQP4 mRNA is strongly expressed in astrocytes, but no expression is found in primary or passaged brain microvessel endothelial cells, or in RBE4 or C6 cells. Our results support the concept that expression of AQP1, which is seen in many non-brain endothelia, is suppressed in the specialized endothelium of the blood-brain barrier.
Resumo:
We report here the protein expression of TRPV1 receptor in axotomized rat retinas and its possible participation in mechanisms involved in retinal ganglion cell (RGC) death. Adult rats were subjected to unilateral, intraorbital axotomy of the optic nerve, and the retinal tissue was removed for further processing. TRPV1 total protein expression decreased progressively after optic nerve transection, reaching 66.2% of control values 21 days after axotomy. The number of cells labeled for TRPV1 in the remnant GCL decreased after 21 days post-lesion (to 63%). Fluoro-jade B staining demonstrated that the activation of TRPV1 in acutely-lesioned eyes elicited more intense neuronal degeneration in the GCL and in the inner nuclear layer than in sham-operated retinas. A single intraocular injection of capsazepine (100 mu M), a TRPV1 antagonist, 5 days after optic nerve lesion, decreased the number of GFAP-expressing Muller cells (72.5% of control values) and also decreased protein nitration in the retinal vitreal margin (75.7% of control values), but did not affect lipid peroxidation. Furthermore, retinal explants were treated with capsaicin (100 mu M), and remarkable protein nitration was then present, which was reduced by blockers of the constitutive and inducible nitric oxide synthases (7-NI and aminoguanidine, respectively). TRPV1 activation also increased GFAP expression, which was reverted by both TRPV1 antagonism with capsazepine and by 7-NI and aminoguanidine. Given that Muller cells do not express TRPV1, we suppose that the increased GFAP expression in these cells might be elicited by TRPV1 activation and by its indirect effect upon nitric oxide overproduction and peroxynitrite formation. We incubated Fluorogold pre-labeled retinal explants in the presence of capsazepine (1 mu M) during 48 h. The numbers of surviving RGCs stained with fluorogold and the numbers of apoptotic cells in the GCL detected with TUNEL were similar in lesioned and control retinas. We conclude that TRPV1 receptor expression decreased after optic nerve injury due to death of TRPV1-containing cells. Furthermore, these data indicate that TRPV1 might be involved in intrinsic protein nitration and Muller cell reaction observed after optic nerve injury. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Singlet oxygen ((1)O(2)) generation in the reaction centers (RCs) of Rhodobacter sphaeroides wild type was characterized by luminescent emission in the near infrared region (time resolved transients and emission spectra) and quantified to have quantum yield of 0.03 +/- 0.005. (1)O(2) emission was measured as a function of temperature, ascorbate, urea and potassium ferricyanide concentrations and as a function of incubation time in H(2)O: D(2)O mixtures. (1)O(2) was shown to be affected by the RC dynamics and to originate from the reaction of molecular oxygen with two sources of triplets: photoactive dimer formed by singlet-triplet mixing and bacteriopheophytin formed by direct photoexcitation and intersystem crossing.
Resumo:
N-Benzyl- and N-(alpha-methoxycarbonylethyl)-2,4,6-triphenyl-1,2-dihydropyridines were submitted to Diels-Alder reactions with maleic anhydride or N-phenylmaleimide yielding, diastereoselectively, the corresponding endo-anti adducts. These novel isoquinuclidines showed to be resistant to N-alkylation or N-protonation, undergoing an unexpected fragmentation via a retro aza Diels-Alder process.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)