920 resultados para predictive regression model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The significant gains in export market shares made in a number of vulnerable euro-area crisis countries have not been accompanied by an appropriate improvement in price competitiveness. This paper argues that, under certain conditions, firms consider export activity as a substitute for serving domestic demand. The strength of the link between domestic demand and exports is dependent on capacity constraints. Our econometric model for six euro-area countries suggests domestic demand pressure and capacity-constraint restrictions as additional variables of a properly specified export equation. As an innovation to the literature, we assess the empirical significance through the logistic and the exponential variant of the non-linear smooth transition regression model. We find that domestic demand developments are relevant for the short-run dynamics of exports in particular during more extreme stages of the business cycle. A strong substitutive relationship between domestic and foreign sales can most clearly be found for Spain, Portugal and Italy, providing evidence of the importance of sunk costs and hysteresis in international trade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Also issued as thesis (M.S.) University of Illinois.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-component mixture regression model that allows simultaneously for heterogeneity and dependency among observations is proposed. By specifying random effects explicitly in the linear predictor of the mixture probability and the mixture components, parameter estimation is achieved by maximising the corresponding best linear unbiased prediction type log-likelihood. Approximate residual maximum likelihood estimates are obtained via an EM algorithm in the manner of generalised linear mixed model (GLMM). The method can be extended to a g-component mixture regression model with the component density from the exponential family, leading to the development of the class of finite mixture GLMM. For illustration, the method is applied to analyse neonatal length of stay (LOS). It is shown that identification of pertinent factors that influence hospital LOS can provide important information for health care planning and resource allocation. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies have shown that increased arterial stiffening can be an indication of cardiovascular diseases like hypertension. In clinical practice, this can be detected by measuring the blood pressure (BP) using a sphygmomanometer but it cannot be used for prolonged monitoring. It has been established that pulse wave velocity (PWV) is a direct measure of arterial stiffening but its usefulness is hampered by the absence of non-invasive techniques to estimate it. Pulse transit time (PTT) is a simple and non-invasive method derived from PWV. However, limited knowledge of PTT in children is found in the present literature. The aims of this study are to identify independent variables that confound PTT measure and describe PTT regression equations for healthy children. Therefore, PTT reference values are formulated for future pathological studies. Fifty-five Caucasian children (39 male) aged 8.4 +/- 2.3 yr (range 5-12 yr) were recruited. Predictive equations for PTT were obtained by multiple regressions with age, vascular path length, BP indexes and heart rate. These derived equations were compared in their PWV equivalent against two previously reported equations and significant agreement was obtained (p < 0.05). Findings herein also suggested that PTT can be useful as a continuous surrogate BP monitor in children.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract A new LIBS quantitative analysis method based on analytical line adaptive selection and Relevance Vector Machine (RVM) regression model is proposed. First, a scheme of adaptively selecting analytical line is put forward in order to overcome the drawback of high dependency on a priori knowledge. The candidate analytical lines are automatically selected based on the built-in characteristics of spectral lines, such as spectral intensity, wavelength and width at half height. The analytical lines which will be used as input variables of regression model are determined adaptively according to the samples for both training and testing. Second, an LIBS quantitative analysis method based on RVM is presented. The intensities of analytical lines and the elemental concentrations of certified standard samples are used to train the RVM regression model. The predicted elemental concentration analysis results will be given with a form of confidence interval of probabilistic distribution, which is helpful for evaluating the uncertainness contained in the measured spectra. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples have been carried out. The multiple correlation coefficient of the prediction was up to 98.85%, and the average relative error of the prediction was 4.01%. The experiment results showed that the proposed LIBS quantitative analysis method achieved better prediction accuracy and better modeling robustness compared with the methods based on partial least squares regression, artificial neural network and standard support vector machine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data fluctuation in multiple measurements of Laser Induced Breakdown Spectroscopy (LIBS) greatly affects the accuracy of quantitative analysis. A new LIBS quantitative analysis method based on the Robust Least Squares Support Vector Machine (RLS-SVM) regression model is proposed. The usual way to enhance the analysis accuracy is to improve the quality and consistency of the emission signal, such as by averaging the spectral signals or spectrum standardization over a number of laser shots. The proposed method focuses more on how to enhance the robustness of the quantitative analysis regression model. The proposed RLS-SVM regression model originates from the Weighted Least Squares Support Vector Machine (WLS-SVM) but has an improved segmented weighting function and residual error calculation according to the statistical distribution of measured spectral data. Through the improved segmented weighting function, the information on the spectral data in the normal distribution will be retained in the regression model while the information on the outliers will be restrained or removed. Copper elemental concentration analysis experiments of 16 certified standard brass samples were carried out. The average value of relative standard deviation obtained from the RLS-SVM model was 3.06% and the root mean square error was 1.537%. The experimental results showed that the proposed method achieved better prediction accuracy and better modeling robustness compared with the quantitative analysis methods based on Partial Least Squares (PLS) regression, standard Support Vector Machine (SVM) and WLS-SVM. It was also demonstrated that the improved weighting function had better comprehensive performance in model robustness and convergence speed, compared with the four known weighting functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62J12, 62K15, 91B42, 62H99.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 68T50,62H30,62J05.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel simulation model for pyrolysis processes oflignocellulosicbiomassin AspenPlus (R) was presented at the BC&E 2013. Based on kinetic reaction mechanisms, the simulation calculates product compositions and yields depending on reactor conditions (temperature, residence time, flue gas flow rate) and feedstock composition (biochemical composition, atomic composition, ash and alkali metal content). The simulation model was found to show good correlation with existing publications. In order to further verify the model, own pyrolysis experiments in a 1 kg/h continuously fed fluidized bed fast pyrolysis reactor are performed. Two types of biomass with different characteristics are processed in order to evaluate the influence of the feedstock composition on the yields of the pyrolysis products and their composition. One wood and one straw-like feedstock are used due to their different characteristics. Furthermore, the temperature response of yields and product compositions is evaluated by varying the reactor temperature between 450 and 550 degrees C for one of the feedstocks. The yields of the pyrolysis products (gas, oil, char) are determined and their detailed composition is analysed. The experimental runs are reproduced with the corresponding reactor conditions in the AspenPlus model and the results compared with the experimental findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple linear regression model plays a key role in statistical inference and it has extensive applications in business, environmental, physical and social sciences. Multicollinearity has been a considerable problem in multiple regression analysis. When the regressor variables are multicollinear, it becomes difficult to make precise statistical inferences about the regression coefficients. There are some statistical methods that can be used, which are discussed in this thesis are ridge regression, Liu, two parameter biased and LASSO estimators. Firstly, an analytical comparison on the basis of risk was made among ridge, Liu and LASSO estimators under orthonormal regression model. I found that LASSO dominates least squares, ridge and Liu estimators over a significant portion of the parameter space for large dimension. Secondly, a simulation study was conducted to compare performance of ridge, Liu and two parameter biased estimator by their mean squared error criterion. I found that two parameter biased estimator performs better than its corresponding ridge regression estimator. Overall, Liu estimator performs better than both ridge and two parameter biased estimator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The processes that govern the predictability of decadal variations in the North Atlantic meridional overturning circulation (MOC) are investigated in a long control simulation of the ECHO-G coupled atmosphere–ocean model. We elucidate the roles of local stochastic forcing by the atmosphere, and other potential ocean processes, and use our results to build a predictive regression model. The primary influence on MOC variability is found to come from air–sea heat fluxes over the Eastern Labrador Sea. The maximum correlation between such anomalies and the variations in the MOC occurs at a lead time of 2 years, but we demonstrate that the MOC integrates the heat flux variations over a period of 10 years. The corresponding univariate regression model accounts for 74.5% of the interannual variability in the MOC (after the Ekman component has been removed). Dense anomalies to the south of the Greenland-Scotland ridge are also shown to precede the overturning variations by 4–6 years, and provide a second predictor. With the inclusion of this second predictor the resulting regression model explains 82.8% of the total variance of the MOC. This final bivariate model is also tested during large rapid decadal overturning events. The sign of the rapid change is always well represented by the bivariate model, but the magnitude is usually underestimated, suggesting that other processes are also important for these large rapid decadal changes in the MOC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A case study of a family resort hotel demonstrated empirical relationships between guest satisfaction and their perception of the hotel's physical appearance, staff attitude, and the guests' age group. The 333 self-administered surveys also provided information about the guests' travel behavior and their experience at the hotel. The predictive regression model confined that the hotel was in need of remodeling, and that potential renovation projects will ultimately result in increased guest satisfaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assessing the fit of a model is an important final step in any statistical analysis, but this is not straightforward when complex discrete response models are used. Cross validation and posterior predictions have been suggested as methods to aid model criticism. In this paper a comparison is made between four methods of model predictive assessment in the context of a three level logistic regression model for clinical mastitis in dairy cattle; cross validation, a prediction using the full posterior predictive distribution and two “mixed” predictive methods that incorporate higher level random effects simulated from the underlying model distribution. Cross validation is considered a gold standard method but is computationally intensive and thus a comparison is made between posterior predictive assessments and cross validation. The analyses revealed that mixed prediction methods produced results close to cross validation whilst the full posterior predictive assessment gave predictions that were over-optimistic (closer to the observed disease rates) compared with cross validation. A mixed prediction method that simulated random effects from both higher levels was best at identifying the outlying level two (farm-year) units of interest. It is concluded that this mixed prediction method, simulating random effects from both higher levels, is straightforward and may be of value in model criticism of multilevel logistic regression, a technique commonly used for animal health data with a hierarchical structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To characterize the epidemiology and risk factors for acute kidney injury (AKI) after pediatric cardiac surgery in our center, to determine its association with poor short-term outcomes, and to develop a logistic regression model that will predict the risk of AKI for the study population. Methods: This single-center, retrospective study included consecutive pediatric patients with congenital heart disease who underwent cardiac surgery between January 2010 and December 2012. Exclusion criteria were a history of renal disease, dialysis or renal transplantation. Results: Of the 325 patients included, median age three years (1 day---18 years), AKI occurred in 40 (12.3%) on the first postoperative day. Overall mortality was 13 (4%), nine of whom were in the AKI group. AKI was significantly associated with length of intensive care unit stay, length of mechanical ventilation and in-hospital death (p<0.01). Patients’ age and postoperative serum creatinine, blood urea nitrogen and lactate levels were included in the logistic regression model as predictor variables. The model accurately predicted AKI in this population, with a maximum combined sensitivity of 82.1% and specificity of 75.4%. Conclusions: AKI is common and is associated with poor short-term outcomes in this setting. Younger age and higher postoperative serum creatinine, blood urea nitrogen and lactate levels were powerful predictors of renal injury in this population. The proposed model could be a useful tool for risk stratification of these patients.