871 resultados para prediction model
Resumo:
Simulations of the top-of-atmosphere radiative-energy budget from the Met Office global numerical weather-prediction model are evaluated using new data from the Geostationary Earth Radiation Budget (GERB) instrument on board the Meteosat-8 satellite. Systematic discrepancies between the model simulations and GERB measurements greater than 20 Wm-2 in outgoing long-wave radiation (OLR) and greater than 60 Wm-2 in reflected short-wave radiation (RSR) are identified over the period April-September 2006 using 12 UTC data. Convective cloud over equatorial Africa is spatially less organized and less reflective than in the GERB data. This bias depends strongly on convective-cloud cover, which is highly sensitive to changes in the model convective parametrization. Underestimates in model OLR over the Gulf of Guinea coincide with unrealistic southerly cloud outflow from convective centres to the north. Large overestimates in model RSR over the subtropical ocean, greater than 50 Wm-2 at 12 UTC, are explained by unrealistic radiative properties of low-level cloud relating to overestimation of cloud liquid water compared with independent satellite measurements. The results of this analysis contribute to the development and improvement of parametrizations in the global forecast model.
Resumo:
Dynamical downscaling is frequently used to investigate the dynamical variables of extra-tropical cyclones, for example, precipitation, using very high-resolution models nested within coarser resolution models to understand the processes that lead to intense precipitation. It is also used in climate change studies, using long timeseries to investigate trends in precipitation, or to look at the small-scale dynamical processes for specific case studies. This study investigates some of the problems associated with dynamical downscaling and looks at the optimum configuration to obtain the distribution and intensity of a precipitation field to match observations. This study uses the Met Office Unified Model run in limited area mode with grid spacings of 12, 4 and 1.5 km, driven by boundary conditions provided by the ECMWF Operational Analysis to produce high-resolution simulations for the Summer of 2007 UK flooding events. The numerical weather prediction model is initiated at varying times before the peak precipitation is observed to test the importance of the initialisation and boundary conditions, and how long the simulation can be run for. The results are compared to raingauge data as verification and show that the model intensities are most similar to observations when the model is initialised 12 hours before the peak precipitation is observed. It was also shown that using non-gridded datasets makes verification more difficult, with the density of observations also affecting the intensities observed. It is concluded that the simulations are able to produce realistic precipitation intensities when driven by the coarser resolution data.
Resumo:
Arctic flaw polynyas are considered to be highly productive areas for the formation of sea-ice throughout the winter season. Most estimates of sea-ice production are based on the surface energy balance equation and use global reanalyses as atmospheric forcing, which are too coarse to take into account the impact of polynyas on the atmosphere. Additional errors in the estimates of polynya ice production may result from the methods of calculating atmospheric energy fluxes and the assumption of a thin-ice distribution within polynyas. The present study uses simulations using the mesoscale weather prediction model of the Consortium for Small-scale Modelling (COSMO), where polynya area is prescribed from satellite data. The polynya area is either assumed to be ice-free or to be covered with thin ice of 10 cm. Simulations have been performed for two winter periods (2007/08 and 2008/09). When using a realistic thin-ice thickness of 10 cm, sea-ice production in Laptev polynyas amount to 30 km3 and 73 km3 for the winters 2007/08 and 2008/09, respectively. The higher turbulent energy fluxes of open-water polynyas result in a 50-70% increase in sea-ice production (49 km3 in 2007/08 and 123 km3 in 2008/09). Our results suggest that previous studies have overestimated ice production in the Laptev Sea.
Resumo:
OBJECTIVE Algorithms to predict the future long-term risk of patients with stable coronary artery disease (CAD) are rare. The VIenna and Ludwigshafen CAD (VILCAD) risk score was one of the first scores specifically tailored for this clinically important patient population. The aim of this study was to refine risk prediction in stable CAD creating a new prediction model encompassing various pathophysiological pathways. Therefore, we assessed the predictive power of 135 novel biomarkers for long-term mortality in patients with stable CAD. DESIGN, SETTING AND SUBJECTS We included 1275 patients with stable CAD from the LUdwigshafen RIsk and Cardiovascular health study with a median follow-up of 9.8 years to investigate whether the predictive power of the VILCAD score could be improved by the addition of novel biomarkers. Additional biomarkers were selected in a bootstrapping procedure based on Cox regression to determine the most informative predictors of mortality. RESULTS The final multivariable model encompassed nine clinical and biochemical markers: age, sex, left ventricular ejection fraction (LVEF), heart rate, N-terminal pro-brain natriuretic peptide, cystatin C, renin, 25OH-vitamin D3 and haemoglobin A1c. The extended VILCAD biomarker score achieved a significantly improved C-statistic (0.78 vs. 0.73; P = 0.035) and net reclassification index (14.9%; P < 0.001) compared to the original VILCAD score. Omitting LVEF, which might not be readily measureable in clinical practice, slightly reduced the accuracy of the new BIO-VILCAD score but still significantly improved risk classification (net reclassification improvement 12.5%; P < 0.001). CONCLUSION The VILCAD biomarker score based on routine parameters complemented by novel biomarkers outperforms previous risk algorithms and allows more accurate classification of patients with stable CAD, enabling physicians to choose more personalized treatment regimens for their patients.
Resumo:
There are a number of factors that contribute to the success of dental implant operations. Among others, is the choice of location in which the prosthetic tooth is to be implanted. This project offers a new approach to analyse jaw tissue for the purpose of selecting suitable locations for teeth implant operations. The application developed takes as input jaw computed tomography stack of slices and trims data outside the jaw area, which is the point of interest. It then reconstructs a three dimensional model of the jaw highlighting points of interest on the reconstructed model. On another hand, data mining techniques have been utilised in order to construct a prediction model based on an information dataset of previous dental implant operations with observed stability values. The goal is to find patterns within the dataset that would help predicting the success likelihood of an implant.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Motivation: While processing of MHC class II antigens for presentation to helper T-cells is essential for normal immune response, it is also implicated in the pathogenesis of autoimmune disorders and hypersensitivity reactions. Sequence-based computational techniques for predicting HLA-DQ binding peptides have encountered limited success, with few prediction techniques developed using three-dimensional models. Methods: We describe a structure-based prediction model for modeling peptide-DQ3.2 beta complexes. We have developed a rapid and accurate protocol for docking candidate peptides into the DQ3.2 beta receptor and a scoring function to discriminate binders from the background. The scoring function was rigorously trained, tested and validated using experimentally verified DQ3.2 beta binding and non-binding peptides obtained from biochemical and functional studies. Results: Our model predicts DQ3.2 beta binding peptides with high accuracy [area under the receiver operating characteristic (ROC) curve A(ROC) > 0.90], compared with experimental data. We investigated the binding patterns of DQ3.2 beta peptides and illustrate that several registers exist within a candidate binding peptide. Further analysis reveals that peptides with multiple registers occur predominantly for high-affinity binders.
Resumo:
This thesis describes the development of a simple and accurate method for estimating the quantity and composition of household waste arisings. The method is based on the fundamental tenet that waste arisings can be predicted from information on the demographic and socio-economic characteristics of households, thus reducing the need for the direct measurement of waste arisings to that necessary for the calibration of a prediction model. The aim of the research is twofold: firstly to investigate the generation of waste arisings at the household level, and secondly to devise a method for supplying information on waste arisings to meet the needs of waste collection and disposal authorities, policy makers at both national and European level and the manufacturers of plant and equipment for waste sorting and treatment. The research was carried out in three phases: theoretical, empirical and analytical. In the theoretical phase specific testable hypotheses were formulated concerning the process of waste generation at the household level. The empirical phase of the research involved an initial questionnaire survey of 1277 households to obtain data on their socio-economic characteristics, and the subsequent sorting of waste arisings from each of the households surveyed. The analytical phase was divided between (a) the testing of the research hypotheses by matching each household's waste against its demographic/socioeconomic characteristics (b) the development of statistical models capable of predicting the waste arisings from an individual household and (c) the development of a practical method for obtaining area-based estimates of waste arisings using readily available data from the national census. The latter method was found to represent a substantial improvement over conventional methods of waste estimation in terms of both accuracy and spatial flexibility. The research therefore represents a substantial contribution both to scientific knowledge of the process of household waste generation, and to the practical management of waste arisings.
Resumo:
Previously developed models for predicting absolute risk of invasive epithelial ovarian cancer have included a limited number of risk factors and have had low discriminatory power (area under the receiver operating characteristic curve (AUC) < 0.60). Because of this, we developed and internally validated a relative risk prediction model that incorporates 17 established epidemiologic risk factors and 17 genome-wide significant single nucleotide polymorphisms (SNPs) using data from 11 case-control studies in the United States (5,793 cases; 9,512 controls) from the Ovarian Cancer Association Consortium (data accrued from 1992 to 2010). We developed a hierarchical logistic regression model for predicting case-control status that included imputation of missing data. We randomly divided the data into an 80% training sample and used the remaining 20% for model evaluation. The AUC for the full model was 0.664. A reduced model without SNPs performed similarly (AUC = 0.649). Both models performed better than a baseline model that included age and study site only (AUC = 0.563). The best predictive power was obtained in the full model among women younger than 50 years of age (AUC = 0.714); however, the addition of SNPs increased the AUC the most for women older than 50 years of age (AUC = 0.638 vs. 0.616). Adapting this improved model to estimate absolute risk and evaluating it in prospective data sets is warranted.
Resumo:
This study tested a prediction model of suicidality in a sample of young adults. Predictor variables included perceived parental rejection, self-criticism, neediness, and depression. Participants (N 5 165) responded to the Depressive Experiences Questionnaire,theInventoryforAssessingMemoriesofParentalRearingBehavior, theCenterforEpidemiologicalStudiesDepressionScale,andtheSuicideBehaviors Questionnaire—Revised. Perceived parental rejection, personality, and depression wereassessedinitiallyatTime1,anddepressionagainandsuicidalitywereassessed 5 months later at Time 2. The proposed structural equation model fit the observed data well in a sample of young adults. Parental rejection demonstrated direct and indirect relationships with suicidality, and self-criticism and neediness each had indirect associations with suicidality. Depression was directly related to suicidality. Implications for clinical practice are discussed.
Resumo:
Background There is a wide variation of recurrence risk of Non-small-cell lung cancer (NSCLC) within the same Tumor Node Metastasis (TNM) stage, suggesting that other parameters are involved in determining this probability. Radiomics allows extraction of quantitative information from images that can be used for clinical purposes. The primary objective of this study is to develop a radiomic prognostic model that predicts a 3 year disease free-survival (DFS) of resected Early Stage (ES) NSCLC patients. Material and Methods 56 pre-surgery non contrast Computed Tomography (CT) scans were retrieved from the PACS of our institution and anonymized. Then they were automatically segmented with an open access deep learning pipeline and reviewed by an experienced radiologist to obtain 3D masks of the NSCLC. Images and masks underwent to resampling normalization and discretization. From the masks hundreds Radiomic Features (RF) were extracted using Py-Radiomics. Hence, RF were reduced to select the most representative features. The remaining RF were used in combination with Clinical parameters to build a DFS prediction model using Leave-one-out cross-validation (LOOCV) with Random Forest. Results and Conclusion A poor agreement between the radiologist and the automatic segmentation algorithm (DICE score of 0.37) was found. Therefore, another experienced radiologist manually segmented the lesions and only stable and reproducible RF were kept. 50 RF demonstrated a high correlation with the DFS but only one was confirmed when clinicopathological covariates were added: Busyness a Neighbouring Gray Tone Difference Matrix (HR 9.610). 16 clinical variables (which comprised TNM) were used to build the LOOCV model demonstrating a higher Area Under the Curve (AUC) when RF were included in the analysis (0.67 vs 0.60) but the difference was not statistically significant (p=0,5147).
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Background. The loss of a child is considered the hardest moment in a parent`s life. Studies addressing length of survival under pediatric palliative care are rare. The aim of this study was to improve a survival prediction model for children in palliative care, as accurate information positively impacts parent and child preparation for palliative care. Procedure. Sixty-five children referred to a pediatric palliative care team were followed from August 2003 until December 2006. Variables investigated (also included in previous studies) were: diagnosis, home care provider, presence of anemia, and performance status score given by the home care provider. Clinical variables such as symptom number were also used to test the score`s ability to pre-validated using the above variables. The number of symptoms at transition to palliative care does not improve the score`s predictive ability. The sum of the single scores gives an overall score for each patient, dividing the population into three groups by probability of 60-day survival: Group A 80.0%, Group B 38.0%, and Group C 28.5% (P < 0.001). Conclusion. A pediatric palliative care score based on easily accessible variables is statistically significant in multivariate analysis. Factors that increase accuracy of life expectancy prediction enable adequate information to be given to patients and families, contributing to therapeutic decision-making issues. Pediatr Blood Cancer. 2010;55:1167-1171. (C) 2010 Wiley-Liss, Inc.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
The principal topic of this work is the application of data mining techniques, in particular of machine learning, to the discovery of knowledge in a protein database. In the first chapter a general background is presented. Namely, in section 1.1 we overview the methodology of a Data Mining project and its main algorithms. In section 1.2 an introduction to the proteins and its supporting file formats is outlined. This chapter is concluded with section 1.3 which defines that main problem we pretend to address with this work: determine if an amino acid is exposed or buried in a protein, in a discrete way (i.e.: not continuous), for five exposition levels: 2%, 10%, 20%, 25% and 30%. In the second chapter, following closely the CRISP-DM methodology, whole the process of construction the database that supported this work is presented. Namely, it is described the process of loading data from the Protein Data Bank, DSSP and SCOP. Then an initial data exploration is performed and a simple prediction model (baseline) of the relative solvent accessibility of an amino acid is introduced. It is also introduced the Data Mining Table Creator, a program developed to produce the data mining tables required for this problem. In the third chapter the results obtained are analyzed with statistical significance tests. Initially the several used classifiers (Neural Networks, C5.0, CART and Chaid) are compared and it is concluded that C5.0 is the most suitable for the problem at stake. It is also compared the influence of parameters like the amino acid information level, the amino acid window size and the SCOP class type in the accuracy of the predictive models. The fourth chapter starts with a brief revision of the literature about amino acid relative solvent accessibility. Then, we overview the main results achieved and finally discuss about possible future work. The fifth and last chapter consists of appendices. Appendix A has the schema of the database that supported this thesis. Appendix B has a set of tables with additional information. Appendix C describes the software provided in the DVD accompanying this thesis that allows the reconstruction of the present work.