950 resultados para predator-prey demography


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Activity has been suggested as an important behaviour that is tightly linked with predator avoidance in tadpoles. In this thesis I examine predator-prey relationships using wood frog tadpoles {Rana sylvaticd) as prey and dragonfly larvae {AnaxJunius) and backswimmers {Notonecta undulatd) as predators. I explore the role of prey activity in predator attack rates, prey response to single and multiple predator introductions, and prey survivorship. The data suggest that Anax is the more successful predator, able to capture both active and inactive tadpoles. In contrast, Notonecta strike at inactive prey less frequently and are seldom successftil when they do. A mesocosm study revealed that the presence of any predator resulted in reduced activity level of tadpoles. Each predator species alone had similar effects on tadpole activity, as did the combined predator treatment. Tadpole survivorship, however, differed significantly among both predator treatments and prey populations. Tadpwles in the combined predator treatment had enhanced risk; survivorship was lower than that expected if the two predators had additive effects. Differences in survivorship among wood frog populations showed that tadpoles from a lake habitat had the lowest survivorship, those from a shallow pond habitat had an intermediate survivorship, and tadpoles from a marsh habitat had the highest survivorship. The frequency of interactions with predators in the native habitat may be driving the population differences observed. In conclusion, results from this study show that complex interactions exist between predators, prey, and the environment, with activity playing a key role in the survival of tadpoles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The interactions among the multiple factors regulating predator-prey relationships make predation a more complex process than previously thought. The degree to which substandard individuals are captured disproportionately seems to be better a function of the difficulty of prey capture than of the hunting techniques (coursing vs. ambushing predators). That is, when the capture and killing of a prey species is easy, substandard individuals will be predated in proportion to their occurrence in the prey population. In the present study, we made use of eagle owls Bubo bubo and their main prey, the rabbit Oryctolagus cuniculus: (a) the brightness of the white tails of rabbits seems to be correlated with the physical condition of individuals, (b) by using the tails of predated rabbits as an index of individual condition, we found that eagle owls seem to prefer substandard individuals (characterized by duller tails), and (c) by using information from continuous radiotracking of 14 individuals, we suggest that the difficulty of rabbit capture could be low. Although the relative benefits of preying on substandard individuals should considerably decrease when a predator is attacking an easy prey, we hypothesise that the eagle owl preference for substandard individuals could be due to the easy detection of poor individuals by a visual cue, the brightness of the rabbit tail. Several elements allow us to believe that this form of visual communication between a prey and one of its main predators could be more widespread than previously thought. In fact: (a) visual signalling plays a relevant role in intraspecific communication in eagle owls and, consequently, visual signals could also play a role in interspecific interactions, and (b) empirical studies showed that signals may inform the predator that it has been perceived, or that the prey is in a sufficiently healthy state to elude the predator.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Predator-prey relationships are an important aspect of the natural world, and, because of its relevance to survival and natural selection, is an interesting relationship to study. In amphibian larvae, level of activity and landscape use are often what determines the survival as prey. I studied the anti-predator behavior of the North American bullfrog (Rana catesbeiana) tadpoles when presented with dragonfly (Aeshna) larvae, a known predator of tadpoles. Tadpoles were acclimated to four different habitats with varying degrees of habitat cover, and were transferred to a new habitat with a degree of cover equal to one of the acclimation tanks. A restrained predator, and thus its chemical cue, was introduced, and the behavior, particularly the use of the habitat cover to hide from the perceived risk of predation was observed. A significantly higher frequency of inactivity was found in tank I than in II and III, and inactivity followed a general trend of decreasing with increasing habitat cover. Difference in tank cover was not found to have a significant effect on swimming behavior, but did have a significant effect on hiding behavior, which increased with higher availability. Foraging decreased significantly with the addition of a predator, but did not vary significantly with different levels of cover. Hiding behavior and reducing conspicuous behaviors (like foraging) are probably the behaviors that afford the tadpole the most success at eluding a predator in their natural environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In a replicated whole-lake experiment, we (a) tested for the existence of a flexible habitat shift in response to predator presence in age-0 rainbow trout (Oncorhynchus mykiss) at risk of cannibalism and (b) evaluated the population-level consequences of habitat shifts in terms of growth and survival over their first growing season. Daphnid food and adult trout predators were substantially more abundant in pelagic than in littoral habitats. Age-0 trout used all habitats in populations without adult trout predators, whereas age-0 trout were observed only in the less profitable littoral habitat in populations with adult trout. Consequently, mean fall mass of age-0 trout in the presence of predators was almost half that observed in populations without adult trout. Despite the shift in habitat use, age-0 trout experienced 90% mortality when adult trout predators were present, in comparison to only 36% mortality when absent. We conclude that the commonly observed habitat shifts by fish at risk of predation, observed at smaller scales, do in fact occur at the whole-system scale over long time intervals. These results suggest that fish are able to perceive risk at large spatial scales and thus take advantage of profitable (but normally risky) habitats when predators are absent, or move to less profitable refuge habitats when predators are present.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Optimal foraging theory assumes that predators use different prey types to maximize their rate of energetic gain. Studies focusing on prey preference are important sources of information to understand the foraging dynamics of Chrysomya albiceps. The purpose of this investigation is to determine the influence of larval starvation in C. albiceps on the predation rate of different prey blowfly species and instars under laboratory conditions. Our results suggest that C. albiceps prefers Cochliomyia macellaria larvae to Chrysomya megacephala under non-starvation and starvation conditions. Nevertheless, predators gained more weight consuming C. macellaria. This result suggests that C. albiceps profit more in consuming C. macellaria rather than C. megacephala. The foraging behaviour displayed by C. abiceps on their prey and the consequences for the blowfly community are also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The vertebrate predators of post-metamorphic anurans were quantified and the predator-prey relationship was investigated by analysing the relative size of invertebrate predators and anurans. More than 100 vertebrate predators were identified (in more than 200 reports) and classified as opportunistic, convenience, temporary specialized and specialized predators. Invertebrate predators were classified as solitary non-venomous, venomous and social foragers according to 333 reviewed reports. Each of these categories of invertebrate predators was compared with the relative size of the anurans, showing an increase in the relative size of the prey when predators used special predatory tactics. The number of species and the number of families of anurans that were preyed upon did not vary with the size of the predator, suggesting that prey selection was not arbitrary and that energetic constraints must be involved in this choice. The relatively low predation pressure upon brachycephalids was related to the presence of some defensive strategies of its species. This compounding review can be used as the foundation for future advances in vertebrate predator-prey interactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Characterization of the diets of upper-trophic predators is a key ingredient in management including the development of ecosystem-based fishery management plans, conservation efforts for top predators, and ecological and economic modeling of predator prey interactions. The California Current Predator Diet Database (CCPDD) synthesizes data from published records of predator food habits over the past century. The database includes diet information for 100+ upper-trophic level predator species, based on over 200 published citations from the California Current region of the Pacific Ocean, ranging from Baja, Mexico to Vancouver Island, Canada. We include diet data for all predators that consume forage species: seabirds, cetaceans, pinnipeds, bony and cartilaginous fishes, and a predatory invertebrate; data represent seven discrete geographic regions within the CCS (Canada, WA, OR, CA-n, CA-c, CA-s, Mexico). The database is organized around predator-prey links that represent an occurrence of a predator eating a prey or group of prey items. Here we present synthesized data for the occurrence of 32 forage species (see Table 2 in the affiliated paper) in the diet of pelagic predators (currently submitted to Ecological Informatics). Future versions of the shared-data will include diet information for all prey items consumed, not just the forage species of interest.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microzooplankton (the 20 to 200 µm size class of zooplankton) is recognised as an important part of marine pelagic ecosystems. In terms of biomass and abundance pelagic ciliates are one of the important groups of organism in microzooplankton. However, their rates - grazing and growth - , feeding behaviour and prey preferences are poorly known and understood. A set of data was assembled in order to derive a better understanding of pelagic ciliates rates, in response to parameters such as prey concentration, prey type (size and species), temperature and their own size. With these objectives, literature was searched for laboratory experiments with information on one or more of these parameters effect studied. The criteria for selection and inclusion in the database included: (i) controlled laboratory experiment with a known ciliates feeding on a known prey; (ii) presence of ancillary information about experimental conditions, used organisms - cell volume, cell dimensions, and carbon content. Rates and ancillary information were measured in units that meet the experimenter need, creating a need to harmonize the data units after collection. In addition different units can link to different mechanisms (carbon to nutritive quality of the prey, volume to size limits). As a result, grazing rates are thus available as pg C/(ciliate*h), µm**3/(ciliate*h) and prey cell/(ciliate*h); clearance rate was calculated if not given and growth rate is expressed as the growth rate per day.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ocean warming and acidification are serious threats to marine life. While each stressor alone has been studied in detail, their combined effects on the outcome of ecological interactions are poorly understood. We measured predation rates and predator selectivity of two closely related species of damselfish exposed to a predatory dottyback. We found temperature and CO2 interacted synergistically on overall predation rate, but antagonistically on predator selectivity. Notably, elevated CO2 or temperature alone reversed predator selectivity, but the interaction between the two stressors cancelled selectivity. Routine metabolic rates of the two prey showed strong species differences in tolerance to CO2 and not temperature, but these differences did not correlate with recorded mortality. This highlights the difficulty of linking species-level physiological tolerance to resulting ecological outcomes. This study is the first to document both synergistic and antagonistic effects of elevated CO2 and temperature on a crucial ecological process like predator-prey dynamics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Eastern curlews Numenius madagascariensis spending the nonbreeding season in eastern Australia foraged on three intertidal decapods: soldier crab Mictyris longicarpus, sentinel crab Macrophthalmus crassipes and ghost-shrimp Trypaea australiensis. Due to their ecology, these crustaceans were spatially segregated (=distributed in 'patches') and the curlews intermittently consumed more than one prey type. It was predicted that if the curlews behaved as intake rate maximizers, the time spent foraging on a particular prey (patch) would reflect relative availabilities of the prey types and thus prey-specific intake rates would be equal. During the mid-nonbreeding period (November-December), Mictyris and Macrophthalmus were primarily consumed and prey-specific intake rates were statistically indistinguishable (8.8 versus 10.1 kJ x min(-1)). Prior to migration (February), Mictyris and Trypaea were hunted and the respective intake rates were significantly different (8.9 versus 2.3 kJ x min(-1)). Time allocation to Trypaea-hunting was independent of the availability of Mictyris. Thus, consumption of Trypaea depressed the overall intake rate. Six hypotheses for consuming Trypaea before migration were examined. Five hypotheses: the possible error by the predator, prey specialization, observer overestimation of time spent hunting Trypaea, supplementary prey and the choice of higher quality prey due to a digestive bottleneck, were deemed unsatisfactory. The explanation for consumption of a low intake-rate but high quality prey (Trypaea) deemed plausible was diet optimisation by the Curlews in response to the pre-migratory modulation (decrease in size/processing capacity) of their digestive system. With a seasonal decrease in the average intake rate, the estimated intake per low tide increased from 1233 to 1508 kJ between the mid-nonbreeding and pre-migratory periods by increasing the overall time spent on the sandflats and the proportion of time spent foraging.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Phenotypic plasticity, the ability of a trait to change as a function of the environment, is central to many ideas in evolutionary biology. A special case of phenotypic plasticity observed in many organisms is mediated by their natural predators. Here, we used a predator-prey system of dragonfly larvae and tadpoles to determine if predator-mediated phenotypic plasticity provides a novel way of surviving in the presence of predators (an innovation) or if it represents a simple extension of the way noninduced tadpoles survive predation. Tadpoles of Limnodynastes peronii were raised in the presence and absence of predation, which then entered a survival experiment. Induced morphological traits, primarily tail height and tail muscle height, were found to be under selection, indicating that predator-mediated phenotypic plasticity may be adaptive. Although predator-induced animals survived better, the multivariate linear selection gradients were similar between the two tadpole groups, suggesting that predator-mediated phenotypic plasticity is an extension of existing survival strategies. In addition, nonlinear selection gradients indicated a cost of predator-induced plasticity that may limit the ability of phenotypic plasticity to enhance survival in the presence of predators.