958 resultados para power law model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the study of the spatial characteristics of the visual channels, the power spectrum model of visual masking is one of the most widely used. When the task is to detect a signal masked by visual noise, this classical model assumes that the signal and the noise are previously processed by a bank of linear channels and that the power of the signal at threshold is proportional to the power of the noise passing through the visual channel that mediates detection. The model also assumes that this visual channel will have the highest ratio of signal power to noise power at its output. According to this, there are masking conditions where the highest signal-to-noise ratio (SNR) occurs in a channel centered in a spatial frequency different from the spatial frequency of the signal (off-frequency looking). Under these conditions the channel mediating detection could vary with the type of noise used in the masking experiment and this could affect the estimation of the shape and the bandwidth of the visual channels. It is generally believed that notched noise, white noise and double bandpass noise prevent off-frequency looking, and high-pass, low-pass and bandpass noises can promote it independently of the channel's shape. In this study, by means of a procedure that finds the channel that maximizes the SNR at its output, we performed numerical simulations using the power spectrum model to study the characteristics of masking caused by six types of one-dimensional noise (white, high-pass, low-pass, bandpass, notched, and double bandpass) for two types of channel's shape (symmetric and asymmetric). Our simulations confirm that (1) high-pass, low-pass, and bandpass noises do not prevent the off-frequency looking, (2) white noise satisfactorily prevents the off-frequency looking independently of the shape and bandwidth of the visual channel, and interestingly we proved for the first time that (3) notched and double bandpass noises prevent off-frequency looking only when the noise cutoffs around the spatial frequency of the signal match the shape of the visual channel (symmetric or asymmetric) involved in the detection. In order to test the explanatory power of the model with empirical data, we performed six visual masking experiments. We show that this model, with only two free parameters, fits the empirical masking data with high precision. Finally, we provide equations of the power spectrum model for six masking noises used in the simulations and in the experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper reports on the structural change and rheological behavior of mixtures of macromolecular suspensions (guar and xanthan gums) in crossflow microfiltration processing. Mixtures in suspension of guar and xanthan gums at low concentrations (1,000 ppm) and different proportions were processed by microfiltration with membrane of nominal pore size of 0.4 mu m. The rheological behavior of the mixtures was investigated in rotational viscometers at two different temperatures, 25 and 40 C, at the beginning and at the end of each experiment. The shear stress (t) in function of the shear rate (gamma) was fitted and analyzed with the power-law model. All the mixtures showed flow behavior index values (n) lower than 1, characterizing non-Newtonian fluids (pseudoplastic). The samples of both mixtures and permeates were also analyzed by absorbency spectroscopy in infrared radiation. The absorbency analysis showed that there is good synergism between xanthan and guar gums without structure modifications or gel formation in the concentration process by microfiltration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of non-Newtonian flow in plate heat exchangers (PHEs) is of great importance for the food industry. The objective of this work was to study the pressure drop of pineapple juice in a PHE with 50 degrees chevron plates. Density and flow properties of pineapple juice were determined and correlated with temperature (17.4 <= T <= 85.8 degrees C) and soluble solids content (11.0 <= X(s) <= 52.4 degrees Brix). The Ostwald-de Waele (power law) model described well the rheological behavior. The friction factor for non-isothermal flow of pineapple juice in the PHE was obtained for diagonal and parallel/side flow. Experimental results were well correlated with the generalized Reynolds number (20 <= Re(g) <= 1230) and were compared with predictions from equations from the literature. The mean absolute error for pressure drop prediction was 4% for the diagonal plate and 10% for the parallel plate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the measurement, frequency-response modeling and identification, and the corresponding impulse time response of the human respiratory impedance and admittance. The investigated adult patient groups were healthy, diagnosed with chronic obstructive pulmonary disease and kyphoscoliosis, respectively. The investigated children patient groups were healthy, diagnosed with asthma and cystic fibrosis, respectively. Fractional order (FO) models are identified on the measured impedance to quantify the respiratory mechanical properties. Two methods are presented for obtaining and simulating the time-domain impulse response from FO models of the respiratory admittance: (i) the classical pole-zero interpolation proposed by Oustaloup in the early 90s, and (ii) the inverse discrete Fourier Transform (DFT). The results of the identified FO models for the respiratory admittance are presented by means of their average values for each group of patients. Consequently, the impulse time response calculated from the frequency response of the averaged FO models is given by means of the two methods mentioned above. Our results indicate that both methods provide similar impulse response data. However, we suggest that the inverse DFT is a more suitable alternative to the high order transfer functions obtained using the classical Oustaloup filter. Additionally, a power law model is fitted on the impulse response data, emphasizing the intrinsic fractal dynamics of the respiratory system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This contribution presents novel concepts for analysis of pressure–volume curves, which offer information about the time domain dynamics of the respiratory system. The aim is to verify whether a mapping of the respiratory diseases can be obtained, allowing analysis of (dis)similarities between the dynamical pattern in the breathing in children. The groups investigated here are children, diagnosed as healthy, asthmatic, and cystic fibrosis. The pressure–volume curves have been measured by means of the noninvasive forced oscillation technique during breathing at rest. The geometrical fractal dimension is extracted from the pressure–volume curves and a power-law behavior is observed in the data. The power-law model coefficients are identified from the three sets and the results show that significant differences are present between the groups. This conclusion supports the idea that the respiratory system changes with disease in terms of airway geometry, tissue parameters, leading in turn to variations in the fractal dimension of the respiratory tree and its dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RX J1826.2-1450/LS 5039 has been recently proposed to be a radio emitting high mass X-ray binary. In this paper, we present an analysis of its X-ray timing and spectroscopic properties using different instruments on board the RXTE satellite. The timing analysis indicates the absence of pulsed or periodic emission on time scales of 0.02-2000 s and 2-200 d, respectively. The source spectrum is well represented by a power-law model, plus a Gaussian component describing a strong iron line at 6.6 keV. Significant emission is seen up to 30 keV, and no exponential cut-off at high energy is required. We also study the radio properties of the system according to the GBI-NASA Monitoring Program. RX J1826.2-1450/LS 5039 continues to display moderate radio variability with a clearly non-thermal spectral index. No strong radio outbursts have been detected after several months.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies involving the use of microalgae are increasingly intensifying for the potential they present to produce biofuels, because they are a renewable energy source that does not compete directly with food production, and because they enable the obtaining of a fuel with less environmental impact when compared to fossil fuel. In this context, the use of microalgae is directly associated to its capacity to be produced on a large scale and to be extracted from the culture medium. Rheological studies are important for obtaining the information needed in the elaboration of projects and equipment that will be used in various operations existing in systems of production and extraction of algal biomass. In the evaluation of different levels of dry biomass concentration, studies have been conducted of the rheological behavior of cultures of Chlorella sp. BR001 and Scenedesmus sp. BR003. The Power Law model adjusted well to the data of shear stress as a function of strain rate. In all concentrations the cultures showed non-Newtonian behavior. It was observed to Scenedesmus sp. BR003 little effect of biomass concentration on the apparent viscosity and shear stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rheological and thermophysical properties were determined for blackberry juice, which was produced from blackberry fruit at 9.1 ± 0.5 °Brix and density of 1.0334 ± 0.0043 g cm-3. The concentration process was performed using a roto evaporator, under vacuum, to obtain concentrated juice at about 60 °Brix. In order to obtain different concentrations, concentrated juice was diluted with distilled water. Rheological measurements were carried out using a Rheotest 2.1 Searle type rheometer. In the tested ranges, the samples behaved as pseudoplastic fluids, and the Power-Law model was satisfactorily fitted to the experimental data. The friction factor was measured for blackberry juice in laminar flow conditions of pseudoplastic behavior. Thermal conductivity, thermal diffusivity and density of blackberry juice at 9.4 to 58.4 °Brix were determined, in triplicate, at 0.5 to 80.8 °C. Polynomial regression was performed to fit experimental data obtaining a good fit. Both temperature and concentration showed a strong influence on thermophysical properties of blackberry juice. Calculated apparent specific heat values varied from 2.416 to 4.300 kJ.kg-1 °C in the studied interval.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rheological behavior and density of goat milk was studied as a function of solids concentration (10.5 to 50.0%) and temperature (273 to 331 k). Newtonian behavior was observed for values of total solids (TS) between 10.5 and 22.0% and temperatures from 276 to 331 k changing to pseudoplastic behavior without yield stress for TS from 25.0 to 39.4% at the same range of temperature. Goat milk with TS between 44.3 to 50.0% and temperatures of 273 to 296 k showed yield stress in addition to pseudoplastic behavior. At 303 to 331 k the power law model was observed again, without yield stress. The density of goat milk ranged from 991.7 to 1232.4 kg.m-3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rheological parameters of raisins were obtained after three different drying methods: convective, osmo-convective and solar drying. Compression tests were applied to rehydrated samples by using a Texture Analyzer TAXT2i. A mathematical trick was used to determine the stress and area was calculated along the deformation. A power law model could adequately fit stress-true strain curves and parameters; K (measure of stiffness) and n (solid behavior index) were obtained as a function of water activity between 0.755 to 0.432. Results showed that these parameters were strongly dependent on water activity for all drying methods. The constant K, which indicates the resistance against deformation, increased with decreasing water activity. on the other hand, increasing water activity resulted in higher solid behavior indexes, showing a large deviation from the Hookean behavior.