998 resultados para potential for ammonia volatilization
Resumo:
The main objective of this thesis is to study the developing fields of aquaponics and its potential for aquaculture wastewater treatment and human urine treatment. Aquaponics is a food production system which combines fish farming (aquaculture) with soilless crop farming (hydroponics). In this thesis the concept of aquaponics and the underlying processes are explained. Research on aquaculture wastewater and human urine wastewater is reviewed and its potential application with aquaponic systems is studied. An overview of the different types of aquaponic systems and current research on the field is also presented. A case study was conducted in a farm in Askeröd, Sweden, which involved building two aquaponic systems (System 1 and System 2) and a human urine-based aquaponic system (System 3), with different degrees of component complexity and sizes. The design, building and monitoring of System 1, System 2 and System 3 was documented and described in detail. Four day experiments were conducted which tested the evolution in concentration of Total Ammonia Nitrogen (NH4+/NH3), Nitrite (NO2-), Nitrate (NO3-), Phosphate (PO43-), and Dissolved Oxygen (O2) after an initial nutrient input. The goal was to assess the concentrations of these parameters after four days and compare them with relevant literature examples in the aquaculture industry and in source-separated urine research. Neither of the two aquaponic systems (System 1 and System 2) displayed all of the parameter concentrations in the last day of testing below reference values found in literature. The best performing of the aquaponic systems was the more complex system (System 2) combining the hydroponic Nutrient Film Technique with a Deep Water Culture component, with a Total Ammonia Nitrogen concentration of 0,20 mg/L, a Nitrite concentration of 0,05 mg/L, a Nitrate concentration of 1,00-5,00 mg/L, a Phosphate concentration of <0,02 mg/L and a Dissolved Oxygen concentration of 8,00 mg/L. The human urine-based aquaponic system (System 3) underperformed in achieving the reference concentration values in literature for most parameters. The removal percentage between the higher recorded values after the input addition and the final day of testing was calculated for two literature examples of separated urine treatment and System 3. The system had a removal percentage of 75% for Total Ammonia Nitrogen, 98% for Nitrite, 25% for Nitrate and 50% for Phosphate. These percentages still underperformed literature examples in most of the tested parameters. The results gathered allowed to conclude that while aquaculture wastewater treatment and human urine treatment is possible with aquaponics systems, overall these did not perform as well as some examples found in recirculating aquaculture systems and source-separated urine treatment literature. However, better measuring techniques, longer testing periods and more research is recommended in this field in order to draw an improved representative conclusion.
Resumo:
Hyperammonemia can provoke irreversible damage to the developing brain, with the formation of cortical atrophy, ventricular enlargement, demyelination or gray and white matter hypodensities. Among the various pathogenic mechanisms involved, alterations in cerebral energy have been demonstrated. In particular, we could show that ammonia exposure generates a secondary deficiency in creatine in brain cells, by altering the brain expression and activity of the genes allowing creatine synthesis (AGAT and GAMT) and transport (SLC6A8). On the other hand, it is known that creatine administration can exert protective effects in various neurodegenerative processes. We could also show that creatine co-treatment under ammonia exposure can protect developing brain cells from some of the deleterious effects of ammonia, in particular axonal growth impairment. This article focuses on the effects of ammonia exposure on creatine metabolism and transport in developing brain cells, and on the potential neuroprotective properties of creatine in the brain exposed to ammonium.
Resumo:
Hyperammonemia can be caused by various acquired or inherited disorders such as urea cycle defects. The brain is much more susceptible to the deleterious effects of ammonium in childhood than in adulthood. Hyperammonemia provokes irreversible damage to the developing central nervous system: cortical atrophy, ventricular enlargement and demyelination lead to cognitive impairment, seizures and cerebral palsy. The mechanisms leading to these severe brain lesions are still not well understood, but recent studies show that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy metabolism, nitric oxide synthesis, oxidative stress and signal transduction pathways. All in all, at the cellular level, these are associated with alterations in neuronal differentiation and patterns of cell death. Recent advances in imaging techniques are increasing our understanding of these processes through detailed in vivo longitudinal analysis of neurobiochemical changes associated with hyperammonemia. Further, several potential neuroprotective strategies have been put forward recently, including the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine, acetyl-L-carnitine, CNTF or inhibitors of MAPKs and glutamine synthetase. Magnetic resonance imaging and spectroscopy will ultimately be a powerful tool to measure the effects of these neuroprotective approaches.
Resumo:
RESUME L'hyperammonémie est particulièrement toxique pour le cerveau des jeunes patients et entraîne une atrophie corticale, un élargissement des ventricules et des défauts de myélinisation, responsables de retards mentaux et développementaux. Les traitements actuels se limitent à diminuer le plus rapidement possible le taux d'ammoniaque dans l'organisme. L'utilisation de traitements neuroprotecteurs pendant les crises d'hyperammonémie permettrait de contrecarrer les effets neurologiques de l'ammoniaque et de prévenir l'apparition des troubles neurologiques. Au cours de cette thèse, nous avons testé trois stratégies de neuroprotection sur des cultures de cellules en agrégats issues du cortex d'embryons de rats et traitées à l'ammoniaque. - Nous avons tout d'abord testé si l'inhibition de protéines intracellulaires impliquées dans le déclenchement de la mort cellulaire pouvait protéger les cellules de la toxicité de l'ammoniaque. Nous avons montré que L'exposition à l'ammoniaque altérait la viabilité des neurones et des oligodendrocytes, et activait les caspases, la calpaïne et la kinase-5 dépendante des cyclines (cdk5) associée à son activateur p25. Alors que l'inhibition pharmacologique des caspases et de la calpaïne n'a pas permis de protéger les cellules cérébrales, un inhibiteur de la cdk5, appelé roscovitine, a réduit significativement la mort neuronale. L'inhibition de la cdk5 semble donc être une stratégie thérapeutique prometteuse pour prévenir 1es effets toxiques de 1'ammoniaque sur les neurones. - Nous avons ensuite étudié les mécanismes neuroprotecteurs déclenchés par le cerveau en réponse à la toxicité de l'ammoniaque. Nous avons montré que l'ammoniaque induisait la synthèse du facteur neurotrophique ciliaire (CNTF) par les astrocytes, via l'activation de la protéine kinase (MIAPK) p38. D'autre part, l'ajout de CNTF a permis de protéger les oligodendrocytes mais pas les neurones des cultures exposées à l'ammoniaque, via les voies de signalisations JAK/STAT, SAPK/JNK et c-jun. - Dans une dernière partie, nous avons voulu contrecarrer, par l'ajout de créatine, le déficit énergétique cérébral induit par l'ammoniaque. La créatine a permis de protéger des cellules de type astrocytaire mais pas les cellules cérébrales en agrégats. Cette thèse amis en évidence que les stratégies de neuroprotection chez les patients hyperammonémiques nécessiteront de cibler plusieurs voies de signalisation afin de protéger tous les types cellulaires du cerveau. Summary : In pediatric patients, hyperammonemia is mainly caused by urea cycle disorders or other inborn errors of metabolism, and leads to neurological injury with cortical atrophy, ventricular enlargement and demyelination. Children rescued from neonatal hyperammonemia show significant risk of mental retardation and developmental disabilities. The mainstay of therapy is limited to ammonia lowering through dietary restriction and alternative pathway treatments. However, the possibility of using treatments in a neuroprotective goal may be useful to improve the neurological outcome of patients. Thus, the main objective of this work was to investigate intracellular and extracellular signaling pathways altered by ammonia tonicity, so as to identify new potential therapeutic targets. Experiments were conducted in reaggregated developing brain cell cultures exposed to ammonia, as a model for the developing CNS of hyperammonemic young patients. Theses strategies of neuroprotection were tested: - The first strategy consisted in inhibiting intracellular proteins triggering cell death. Our data indicated that ammonia exposure altered the viability of neurons and oligodendrocytes. Apoptosis and proteins involved in the trigger of apoptosis, such as caspases, calpain and cyclin-dependent kinase-5 (cdk5) with its activator p25, were activated by ammonia exposure. While caspases and calpain inhibitors exhibited no protective effects, roscovitine, a cdk5 inhibitor, reduced ammonia-induced neuronal death. This work revealed that inhibition of cdk5 seems a promising strategy to prevent the toxic effects of ammonia on neurons. - The second strategy consisted in mimicking, the endogenous protective mechanisms triggered by ammonia in the brain. Ammonia exposure caused an increase of the ciliary neurotrophic factor (CNTF) expression, through the activation of the p38 mitogen-activated protein kinase (MAPK) in astrocytes. Treatment of cultures exposed to ammonia with exogenous CNTF demonstrated strong protective effects on oligodendrocytes but not on neurons. These protective effects seemed to involve JAK/STAT, SAPK/JNK and c-jun proteins. - The third strategy consisted in preventing the ammonia-induced cerebral energy deficit with creatine. Creatine treatment protected the survival of astrocyte-like cells through MAPKs pathways. In contrast, it had no protective effects in reaggregated developing brain cell cultures exposed to ammonia. The present study suggests that neuroprotective strategies should optimally be directed at multiple targets to prevent ammonia-induced alterations of the different brain cell types.
Resumo:
The goal of this study was to evaluate the feasibility of preparing nanocapsules and nanoemulsions using tea tree oil as oily phase aiming to protect its volatilization. The nanostructures presented nanometric mean size (160-220 nm) with a polydispersity index below 0.25 and negative zeta potential. The pH values were 6.43 ± 0.37 and 5.98 ± 0.00 for nanoemulsions and nanocapsules, respectively. The oil content after preparation was 96%. The inclusion of tea tree oil in nanocapsules showed higher protection against volatilization. The analysis of mean size and polydispersity index of formulations presented no significant alteration during the storage time.
Resumo:
Al(C9H6ON)3.2.5H2O was precipitated from the mixture of an aqueous solution of aluminium ion and an acid solution of 8-hydroxyquinoline, by increasing the pH value to 9.5 with ammonia aqueous solution. The TG curves in nitrogen atmosphere present mass losses due to dehydration, partial volatilisation (sublimation plus vaporisation) of the anhydrous compound followed by thermal decomposition with the formation of a mixture of carbonaceous and residues. The relation between sublimation and vaporisation depends on the heating rate used. The non isothermic integral isoconventional methods as linear equations of Ozawa-Flynn-Wall and Kissinger-Akahira-Sunose (KAS) were used to obtain the kinetic parameters from TG and DTA curves, respectively. Despite the fact that both dehydration and volatilisation reactions follow the linearity by using both methods, only for the volatilisation reaction the validity condition, 20<= E/RT<= 50, was verified.
Resumo:
The study evaluates the potential application of chemical substances, obtained from biogas plants` by-products. Through the anaerobic digestion process with biogas the large amount of digestate is produced. This digestate mainly consists on the organic matter with the high concentration of nutrients such as nitrogen and phosphorus. During ammonia stripping and phosphorus precipitation the products- ammonia water, ammonium sulfate, ammonium nitrate, ferrous phosphate, aluminum phosphate, calcium phosphate and struvite can be recovered. These chemicals have potential application in different industrial sectors. According to Finnish market and chemicals properties, the most perspective industrial applications were determined. Based on the data, obtained through the literature review and market study, the ammonia water was recognized as a most perspective recovered substances. According to interview provided among Finnish companies, ammonia water is used for flue gas treatment in SNCR technology. This application has a large scale in the framework of Finnish industrial sectors. As well nitrogen with phosphorous can be used as a source of nutrients in the biological wastewater treatment plants of paper mills.
Resumo:
Elevated concentrations of ammonia in the brain as a result of hyperammonemia leads to cerebral dysfunction involving a spectrum of neuropsychiatric and neurological symptoms (impaired memory, shortened attention span, sleep-wake inversions, brain edema, intracranial hypertension, seizures, ataxia and coma). Many studies have demonstrated ammonia as a major player involved in the neuropathophysiology associated with liver failure and inherited urea cycle enzyme disorders. Ammonia in solution is composed of a gas (NH(3)) and an ionic (NH(4) (+)) component which are both capable of crossing plasma membranes through diffusion, channels and transport mechanisms and as a result have a direct effect on pH. Furthermore, NH(4) (+) has similar properties as K(+) and, therefore, competes with K(+) on K(+) transporters and channels resulting in a direct effect on membrane potential. Ammonia is also a product as well as a substrate for many different biochemical reactions and consequently, an increase in brain ammonia accompanies disturbances in cerebral metabolism. These direct effects of elevated ammonia concentrations on the brain will lead to a cascade of secondary effects and encephalopathy.
Resumo:
A modelling study has been undertaken to assess the likely impacts of climate change on water quality across the UK. A range of climate change scenarios have been used to generate future precipitation, evaporation and temperature time series at a range of catchments across the UK. These time series have then been used to drive the Integrated Catchment (INCA) suite of flow, water quality and ecological models to simulate flow, nitrate, ammonia, total and soluble reactive phosphorus, sediments, macrophytes and epiphytes in the Rivers Tamar, Lugg, Tame, Kennet, Tweed and Lambourn. A wide range of responses have been obtained with impacts varying depending on river character, catchment location, flow regime, type of scenario and the time into the future. Essentially upland reaches of river will respond differently to lowland reaches of river, and the responses will vary depending on the water quality parameter of interest.
Resumo:
The potential of a prebiotic oligosaccharide lactulose, a probiotic strain of Lactobacillus plantarum, or their synbiotic combination to control postweaning colibacillosis in pigs was evaluated using an enterotoxigenic Escherichia coli (ETEC) K88 oral challenge. Seventy-two weanlings were fed four diets: a control diet (CTR), that diet supplemented with L. plantarum (2 × 10(10) CFU · day(-1)) (LPN), that diet supplemented with 10 g · kg(-1) lactulose (LAC), or a combination of the two treatments (SYN). After 7 days, the pigs were orally challenged. Six pigs per treatment were euthanized on days 6 and 10 postchallenge (PC). Inclusion of lactulose improved the average daily gain (ADG) (P < 0.05) and increased lactobacilli (P < 0.05) and the percentage of butyric acid (P < 0.02) in the colon. An increase in the ileum villous height (P < 0.05) and a reduction of the pig major acute-phase protein (Pig-MAP) in serum (P < 0.01) were observed also. The inclusion of the probiotic increased numbers of L. plantarum bacteria in the ileum and colon (P < 0.05) and in the total lactobacilli in the colon and showed a trend to reduce diarrhea (P = 0.09). The concentrations of ammonia in ileal and colonic digesta were decreased (P < 0.05), and the villous height (P < 0.01) and number of ileal goblet cells (P < 0.05) increased, at day 10 PC. A decrease in plasmatic tumor necrosis factor alpha (TNF-α) (P < 0.01) was also seen. The positive effects of the two additives were combined in the SYN treatment, resulting in a complementary synbiotic with potential to be used to control postweaning colibacillosis.
Resumo:
Forensic archaeologists and criminal investigators employ many different techniques for the location, recovery, and analysis of clandestine graves. Many of these techniques are based upon the premise that a grave is an anomaly and therefore differs physically, biologically, or chemically from its surroundings. The work reviewed in this communication demonstrates how and why field mycology might provide a further tool towards the investigation of scenes of crime concealed in forest ecosystems. The fruiting structures of certain fungi, the ammonia and the postputrefaction fungi, have been recorded repeatedly in association with decomposed mammalian cadavers in disparate regions of the world. The ecology and physiology of these fungi are reviewed briefly with a view to their potential as a forensic tool. This application of mycology is at an interface with forensic archaeology and forensic taphonomy and may provide a means to detect graves and has the potential to estimate postburial interval.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work encompasses the direct electrodeposition of polypyrrole nanowires onto Au substrates using different electrochemical techniques: normal pulse voltammetry (NPV) and constant potential method with the aim in applying these films for the first time in ammonia sensing in solution. The performance of these nanowire-based sensors are compared and evaluated in terms of: film morphology (analyzed with scanning electron microscopy); their sensitivity towards ammonia; electrochemical and contact angle measurements. For nanowires prepared by NPV, the sensitivity towards ammonia increases with increasing amount of electrodeposited polypyrrole, as expected due to the role of polypyrrole as electrochemical transducer for ammonia oxidation. On the other hand, nanowires prepared potentiostatically displayed an unexpected opposite behavior, attributed to the lower conductivity of longer polypyrrole nanowires obtained through this technique. These results evidenced that the analytical and physico-chemical features of nanostructured sensors can differ greatly from those of their conventional bulky analogous. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Ocean acidification (OA), caused by the dissolution of increasing concentrations of atmospheric carbon dioxide (CO2) in seawater, is projected to cause significant changes to marine ecology and biogeochemistry. Potential impacts on the microbially driven cycling of nitrogen are of particular concern. Specifically, under seawater pH levels approximating future OA scenarios, rates of ammonia oxidation (the rate-limiting first step of the nitrification pathway) have been shown to dramatically decrease in seawater, but not in underlying sediments. However, no prior study has considered the interactive effects of microbial ammonia oxidation and macrofaunal bioturbation activity, which can enhance nitrogen transformation rates. Using experimental mesocosms, we investigated the responses to OA of ammonia oxidizing microorganisms inhabiting surface sediments and sediments within burrow walls of the mud shrimp Upogebia deltaura. Seawater was acidified to one of four target pH values (pHT 7.90, 7.70, 7.35 and 6.80) in comparison with a control (pHT 8.10). At pHT 8.10, ammonia oxidation rates in burrow wall sediments were, on average, fivefold greater than in surface sediments. However, at all acidified pH values (pH < = 7.90), ammonia oxidation rates in burrow sediments were significantly inhibited (by 79-97%; p < 0.01), whereas rates in surface sediments were unaffected. Both bacterial and archaeal abundances increased significantly as pHT declined; by contrast, relative abundances of bacterial and archaeal ammonia oxidation (amoA) genes did not vary. This research suggests that OA could cause substantial reductions in total benthic ammonia oxidation rates in coastal bioturbated sediments, leading to corresponding changes in coupled nitrogen cycling between the benthic and pelagic realms.
Resumo:
We investigated the effect of the calcium concentration in seawater and thereby the calcite saturation state (omega) on the magnesium and strontium incorporation into benthic foraminiferal calcite under laboratory conditions. For this purpose individuals of the shallow-water species Heterostegina depressa (precipitating high-Mg calcite, symbiont-bearing) and Ammonia tepida (low-Mg calcite, symbiont-barren) were cultured in media under a range of [Ca2+], but similar Mg/Ca ratios. Trace element/Ca ratios of newly formed calcite were analysed with Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and normalized to the seawater elemental composition using the equation DTE=(TE/Cacalcite)/(TE/Caseawater). The culturing study shows that DMg of A. tepida significantly decreases with increasing omega at a gradient of -4.3x10-5 per omega unit. The DSr value of A. tepida does not change with omega, suggesting that fossil Sr/Ca in this species may be a potential tool to reconstruct past variations in seawater Sr/Ca. Conversely, DMg of H. depressa shows only a minor decrease with increasing omega, while DSr increases considerably with omega at a gradient of 0.009 per omega unit. The different responses to seawater chemistry of the two species may be explained by a difference in the calcification pathway that is, at the same time, responsible for the variation in the total Mg incorporation between the two species. Since the Mg/Ca ratio in H. depressa is 50-100 times higher than that of A. tepida, it is suggested that the latter exhibits a mechanism that decreases the Mg/Ca ratio of the calcification fluid, while the high-Mg calcite forming species may not have this physiological tool. If the dependency of Mg incorporation on seawater [Ca2+] is also valid for deep-sea benthic foraminifera typically used for paleostudies, the higher Ca concentrations in the past may potentially bias temperature reconstructions to a considerable degree. For instance, 25 Myr ago Mg/Ca ratios in A. tepida would have been 0.2 mmol/mol lower than today, due to the 1.5 times higher [Ca2+] of seawater, which in turn would lead to a temperature underestimation of more than 2 °C.