984 resultados para potential fields
Resumo:
We have studied the behaviour of a charged particle in an axially symmetric magnetic field having a neutral point, so as to find a possibility of confining a charged particle in a thermonuclear device. In order to study the motion we have reduced a three-dimensional motion to a two-dimensional one by introducing a fictitious potential. Following Schmidt we have classified the motion, as an ‘off-axis motion’ and ‘encircling motion’ depending on the behaviour of this potential. We see that the particle performs a hybrid type of motion in the negative z-axis, i.e. at some instant it is in ‘off-axis motion’ while at another instant it is in ‘encircling motion’. We have also solved the equation of motion numerically and the graphs of the particle trajectory verify our analysis. We find that in most of the cases the particle is contained. The magnetic moment is found to be moderately adiabatic.
Resumo:
Prebreakdown currents in a coaxial cylindrical geometry in nitrogen have been measured with and without a crossed magnetic field. The range of parameters used in the investigation are 2.6 ÿ p ÿ 14.5 torr, 50 ÿ (E/p) ÿ 420 V cm-1 torr-1, and 43.0 ÿ H/p ÿ 1185 Oe torr-1 (p is the pressure, E is the electric field, and H is the magnetic field). The initial photoelectric current is obtained by allowing photons produced in an auxiliary glow discharge to strike the cathode. Ions and electrons produced in the auxiliary discharge are prevented from reaching the main gap by suitable shielding. By modifying the Rice equation for back diffusion, the measured ionization current multiplication without a crossed magnetic field is compared with the multiplication predicted by the Townsend growth equation for nonuniform electric fields. It is observed that over the range of 50 Ã�¿ (E/P)max Ã�¿ 250 [(E/P)max is the value of E/p at the central electrode of the coaxial system] measured and calculated multiplication of current agree with each other. With a crossed magnetic field the prebreakdown currents have been measured and compared with the theoretically calculated currents using the equivalent pressure concept. Agreement between the calculated and measured currents is not satisfactory, and this has been attributed more to the uncertainty in the collision frequency data available than nonuniformity of the electric field. Sparking potentials have been measured with and without a crossed magnetic field.
Resumo:
We calculate the thermopower of monolayer graphene in various circumstances. We consider acoustic phonon scattering which might be the operative scattering mechanism in freestanding films and predict that the thermopower will be linear in any induced gap in the system. Further, the thermopower peaks at the same value of chemical potential (tunable by gate voltage) independent of the gap. We show that in the semiclassical approximation, the thermopower in a magnetic field saturates at high field to a value which can be calculated exactly and is independent of the details of the scattering. This effect might be observable experimentally. We also note that a Yukawa scattering potential can be used to fit experimental data for the thermopower for reasonable values of the screening length parameter.
Resumo:
Generation and study of synthetic gauge fields has enhanced the possibility of using cold atom systems as quantum emulators of condensed matter Hamiltonians. In this article we describe the physics of interacting spin -1/2 fermions in synthetic non-Abelian gauge fields which induce a Rashba spin-orbit interaction on the motion of the fermions. We show that the fermion system can evolve to a Bose-Einstein condensate of a novel boson which we call rashbon. The rashbon-rashbon interaction is shown to be independent of the interaction between the constituent fermions. We also show that spin-orbit coupling can help enhancing superfluid transition temperature of weak superfluids to the order of Fermi temperature. A non-Abelian gauge field, when used in conjunction with another potential, can generate interesting Hamiltonians such as that of a magnetic monopole.
Resumo:
Quantum emulation property of the cold atoms has generated a lot of interest in studying systems with synthetic gauge fields. In this article, we describe the physics of two component Fermi gas in the presence of synthetic non-Abelian SU(2) gauge fields. Even for the non-interacting system with the gauge fields, there is an interesting change in the topology of the Fermi surface by tuning only the gauge field strength. When a trapping potential is used in conjunction with the gauge fields, the non-interacting system has the ability to produce novel Hamiltonians and show characteristic change in the density profile of the cloud. Without trap, the gauge fields act as an attractive interaction amplifier and for special kinds of gauge field configurations, there are two-body bound states for any attraction even in three dimensions. For a many body system, the gauge fields can induce a crossover from a weak superfluid to a strong superfluid with transition temperature as high as the Fermi temperature. The superfluid state obtained for a very large gauge field strength is a superfluid of new kind of bosons, called ``rashbons'', the properties of which are independent of its constituent two component fermions and are solely determined by the gauge field strength. We also discuss the collective excitations over the superfluid ground states and the experimental relevance of the physics.
Resumo:
The ``synthetic dimension'' proposal A. Celi et al., Phys. Rev. Lett. 112, 043001 (2014)] uses atoms with M internal states (''flavors'') in a one-dimensional (1D) optical lattice, to realize a hopping Hamiltonian equivalent to the Hofstadter model (tight-binding model with a given magnetic flux per plaquette) on an M-sites-wide square lattice strip. We investigate the physics of SU(M) symmetric interactions in the synthetic dimension system. We show that this system is equivalent to particles with SU(M) symmetric interactions] experiencing an SU(M) Zeeman field at each lattice site and a non-Abelian SU(M) gauge potential that affects their hopping. This equivalence brings out the possibility of generating nonlocal interactions between particles at different sites of the optical lattice. In addition, the gauge field induces a flavor-orbital coupling, which mitigates the ``baryon breaking'' effect of the Zeeman field. For M particles, concomitantly, the SU(M) singlet baryon which is site localized in the usual 1D optical lattice, is deformed to a nonlocal object (''squished baryon''). We conclusively demonstrate this effect by analytical arguments and exact (numerical) diagonalization studies. Our study promises a rich many-body phase diagram for this system. It also uncovers the possibility of using the synthetic dimension system to laboratory realize condensed-matter models such as the SU(M) random flux model, inconceivable in conventional experimental systems.
Resumo:
The Carr Lake Project aims to convert Carr Lake’s 450 acres of agriculture fields into a regional multi-use park that will benefit flood protection, water quality, and wildlife habitat, while also providing additional recreational areas for the local community. The Project is represented by an informal consortium of interested parties including the Watershed Institute of California State University Monterey Bay, The City of Salinas, 1000 Friends of Carr Lake, and the Big Sur Land Trust. (Document contains 54 pages)
Resumo:
A theory of electromagnetic absorption is presented to explain the changes in surface impedance for Pippard superconductors (ξo ≫λ) due to large static magnetic fields. The static magnetic field penetrating the metal near the surface induces a momentum dependent potential in Bogolubov's equations. Such a potential modifies a quasiparticle's wavefunction and excitation spectrum. These changes affect the behavior of the surface impedance in a way that in large measure agrees with available observations.
Rice-fish culture: status and potential for increased production in the southwestern states of India
Resumo:
The scope of increasing production through rice-fish integration, suitable for coastal districts of Kerala, Karnataka, Goa and Maharashtra, is reviewed. The method of adopting the lowlying freshwater rice fields to raise 2 rice crops along with 4-species fish culture, followed by a third non-cereal summer crop in a year, is discussed. A calendar of operation and economics of the system are presented.
Resumo:
Protein deficient diets are a standard way of life in many parts of East Africa;this of course tends to result in shorter life expectancy and chronic ill-health. Population increase is sufficiently high to outdistance the economic gains that may be made in various fields. With recurrent shortages of basic commodities not only in East Africa, but in many parts of the world, it is becoming increasingly clear that agricultural production practices must be maximised rapidly in order to meet the world's constantly expanding need for food. Here in East Africa, while our food requirements can be met most of the time, our protein requirements are far from being met. Yields from traditional fishery resources, must therefore be increased. The farming of fish (aquaculture)adds a new dimension to food production in general and high quality protein production in particular, in that it can be incorporated into other agricultural production activities.
Resumo:
We theoretically investigate the energy spectra of two-electron two-dimensional (2e 2D) quantum dots (QDs) confined by triangular potentials and bowl-like potentials in a magnetic field by exact diagonalization in the framework of effective mass theory. An in-plane electric field is,found to contribute to the singlet-triplet transition of the ground state of the 2e 2D QDs confined by triangular or bowl-like potentials in a perpendicular magnetic field. The stronger the in-plane electric field, the smaller the magnetic field for the total spin of the ground states in the dot systems to change from S = 0 to S = 1. However, the influence of an in-plane electric field on the singlet-triplet transition of the ground state of two electrons in a triangular QD modulated by a perpendicular magnetic field is quite small because the triangular potential just deviates from the harmonic potential well slightly. We End that the strength of the perpendicular magnetic field needed for the spin singlet-triplet transition of the ground state of the QD confined by a bowl-like potential is reduced drastically by applying an in-plane electric field.
Resumo:
Coherent tunnelling is studied in framework of the effective mass approximation for an asymmetric coupled quantum well. The Hartree potential due to the electron-electron interaction is considered in our calculation. The effects of the longitudinal and transverse magnetic field on coherent tunnelling characteristics are discussed. It has been found that the external field plays an important role in modulating the electron states.
Resumo:
The energy spectrum and the persistent currents are calculated for a finite-width mesoscopic annulus with radial potential barrier, threading a magnetic flux through the hole of the ring. Owing to the presence of tunneling barrier, the coupling effect leads to the splitting of each radial energy subband of individual concentrical rings into two one. Thus, total currents and currents carried by single high-lying eigenstate as a function of magnetic flux exhibit complicated patterns. However, periodicity and antisymmetry of current curves in the flux still preserve.
Resumo:
We have studied the single-electron and two-electron vertically-assembled quantum disks in an axial magnetic field using the effective mass approximation. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate the six criergy levels of single-electron quantum disks and the two lowest energy levels of two-electron quantum disks in an axial magnetic field. The change of the magnetic field as an effective potential strongly modifies the electronic structures. leading to splittings and crossings between levels The results demonstrate the switching between the around states with the total spins S = 0 and S = 1. The switching results in a qubit allowed to fabricate by current growth techniques.