903 resultados para polymer-ceramic composites


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The non-ohmic and dielectric properties as well as the dependence on the microstructural features of CaCu(3)Ti(4)O(12)/CaTiO(3) ceramic composites obtained by conventional and microwave sintering were investigated. It was demonstrated that the non-ohmic and dielectric properties depend strongly on the sintering conditions. It was found that the non-linear coefficient reaches values of 65 for microwave-sintered samples and 42 for samples sintered in a conventional furnace when a current density interval of 1-10 mA cm(-2) is considered. The non-linear coefficient value of 65 is equivalent to 1500 for samples sintered in the microwave if a current interval of 5-30 mA is considered as is shortly discussed by Chung et al (2004 Nature Mater. 3 774). Due to a high non-linear coefficient and a low leakage current (90 mu A) under both processing conditions, these samples are promising for varistor applications. The conventionally sintered samples exhibit a higher relative dielectric constant at 1 kHz (2960) compared with the samples sintered in the microwave furnace (2100). At high frequencies, the dielectric constant is also larger in the samples sintered in the conventional furnace. Depending on the application, one or another synthesis methodology is recommended, that is, for varistor applications sintered in a microwave furnace and for dielectric application sintered in a conventional furnace.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, in situ alpha-SiAlON-SiC ceramic composites were obtained,by, liquid phase sintering, using SiC as reinforcement. Different beta-SiC powder contents (0-20 wt.%), were added to Si3N4-AlN-RE2O3. powder mixtures, and compacted by cold isostatic pressing. The samples were sintered at 1950 degrees C for 1 h, in N-2 atmosphere. Sintered: samples were characterized by relative density, weight loss, X-ray diffraction and scanning electron microscopy. Furthermore, mechanical properties such as hardness and fracture toughness were determined by Vickers indentation method. Lattice parameters of the alpha' phase did not considerably change with increase of SiC content. However, morphology, average grain size and aspect ratio of the alpha' phase were considerably changed with increase of the SiC content. These behavior influences significantly the mechanical properties of this hard ceramic composite. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monitoring non-ionizing radiant energy is increasingly demanded for many applications such as automobile, biomedical and security system. Thermal type infrared (IR) sensors can operate at room temperature and pyroelectric materials have high sensitivity and accuracy for that application. Working as thermal transducer pyroelectric sensor converts the non-quantified thermal flux into the output measurable quantity of electrical charge, voltage or current. In the present study the composite made of poly(vinylidene fluoride) -PVDF and lead zirconate titanate (PZT) partially recovered with polyaniline (PAni) conductor polymer has been used as sensor element. The pyroelectric coefficient p(T) was obtained by measuring the pyroelectric reversible current, i.e., measuring the thermally stimulated depolarization current (TSDC) after removing all irreversible contribution to the current such as injected charge during polarization of the sample. To analyze the sensing property of the pyroelectric material, the sensor is irradiated by a high power light source (halogen lamp of 250 W) that is chopped providing a modulated radiation. A device assembled in the laboratory is used to change the light intensity sensor, an aluminum strip having openings with diameters ranging from 1 to 10 mm incremented by one millimeter. The sensor element is assembled between two electrodes while its frontal surface is painted black ink to maximize the light absorption. The signal from the sensor is measured by a Lock-In amplifier model SR530 -Stanford Research Systems. The behavior of the output voltage for an input power at several frequencies for PZT-PAni/PVDF (30/ 70 vol%) composite follows the inverse power law (1/ f) and the linearity can be observed in the frequency range used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main reasons for the attention focused on ceramics as possible structural materials are their wear resistance and the ability to operate with limited oxidation and ablation at temperatures above 2000°C. Hence, this work is devoted to the study of two classes of materials which can satisfy these requirements: silicon carbide -based ceramics (SiC) for wear applications and borides and carbides of transition metals for ultra-high temperatures applications (UHTCs). SiC-based materials: Silicon carbide is a hard ceramic, which finds applications in many industrial sectors, from heat production, to automotive engineering and metals processing. In view of new fields of uses, SiC-based ceramics were produced with addition of 10-30 vol% of MoSi2, in order to obtain electro conductive ceramics. MoSi2, indeed, is an intermetallic compound which possesses high temperature oxidation resistance, high electrical conductivity (21·10-6 Ω·cm), relatively low density (6.31 g/cm3), high melting point (2030°C) and high stiffness (440 GPa). The SiC-based ceramics were hot pressed at 1900°C with addition of Al2O3-Y2O3 or Y2O3-AlN as sintering additives. The microstructure of the composites and of the reference materials, SiC and MoSi2, were studied by means of conventional analytical techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (SEM-EDS). The composites showed a homogeneous microstructure, with good dispersion of the secondary phases and low residual porosity. The following thermo-mechanical properties of the SiC-based materials were measured: Vickers hardness (HV), Young’s modulus (E), fracture toughness (KIc) and room to high temperature flexural strength (σ). The mechanical properties of the composites were compared to those of two monolithic SiC and MoSi2 materials and resulted in a higher stiffness, fracture toughness and slightly higher flexural resistance. Tribological tests were also performed in two configurations disco-on-pin and slideron cylinder, aiming at studying the wear behaviour of SiC-MoSi2 composites with Al2O3 as counterfacing materials. The tests pointed out that the addition of MoSi2 was detrimental owing to a lower hardness in comparison with the pure SiC matrix. On the contrary, electrical measurements revealed that the addition of 30 vol% of MoSi2, rendered the composite electroconductive, lowering the electrical resistance of three orders of magnitude. Ultra High Temperature Ceramics: Carbides, borides and nitrides of transition metals (Ti, Zr, Hf, Ta, Nb, Mo) possess very high melting points and interesting engineering properties, such as high hardness (20-25 GPa), high stiffness (400-500 GPa), flexural strengths which remain unaltered from room temperature to 1500°C and excellent corrosion resistance in aggressive environment. All these properties place the UHTCs as potential candidates for the development of manoeuvrable hypersonic flight vehicles with sharp leading edges. To this scope Zr- and Hf- carbide and boride materials were produced with addition of 5-20 vol% of MoSi2. This secondary phase enabled the achievement of full dense composites at temperature lower than 2000°C and without the application of pressure. Besides the conventional microstructure analyses XRD and SEM-EDS, transmission electron microscopy (TEM) was employed to explore the microstructure on a small length scale to disclose the effective densification mechanisms. A thorough literature analysis revealed that neither detailed TEM work nor reports on densification mechanisms are available for this class of materials, which however are essential to optimize the sintering aids utilized and the processing parameters applied. Microstructural analyses, along with thermodynamics and crystallographic considerations, led to disclose of the effective role of MoSi2 during sintering of Zrand Hf- carbides and borides. Among the investigated mechanical properties (HV, E, KIc, σ from room temperature to 1500°C), the high temperature flexural strength was improved due to the protective and sealing effect of a silica-based glassy phase, especially for the borides. Nanoindentation tests were also performed on HfC-MoSi2 composites in order to extract hardness and elastic modulus of the single phases. Finally, arc jet tests on HfC- and HfB2-based composites confirmed the excellent oxidation behaviour of these materials under temperature exceeding 2000°C; no cracking or spallation occurred and the modified layer was only 80-90 μm thick.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer-nanoparticle hybrids show synergistic effects, demonstrating both, the unique properties of nanosized structures and the good processability and functionalities of polymeric materials. This work shows the synthesis and application of block copolymers containing a soluble, functional block and a short anchor block, which efficiently binds to the surface of nanocrystals. We functionalized anisotropic, semiconducting nanoparticles, which can be dissolved in organic and polymeric matrices upon modification. The modified nanorods have the ability to form liquid crystalline phases, which behave similar to low molecular liquid crystals with a reversible clearing behaviour. These liquid crystalline phases could also be obtained in hole conducting matrices. For a macroscopic orientation of the nanorods, electric fields were applied and a switching (in analogy to known liquid crystals) to a homeotropic orientation was observed.rnBy introduction of dye molecules in the anchor block of a hole conducting block copolymer, all essential components of a solar cell can be combined in a single particle. Light absorption of the dye induces the injection of electrons into the particles, followed by a charging, that was monitored by a special AFM technique.rnLight emitting nanocrystals were functionalized analogously with a hole transporting polymer. The stability of the particles could be enhanced by the sterically stabilizing polymer corona and the particles showed improved properties in terms of processing. We applied these hybrid materials in light emitting devices, which showed better characteristics due to an improved hole injection and well dispersed emitting particles in the active device layer.rnThe work shows the broad spectrum of properties and applications based on the synergistic effects in hybrid and composite materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim of the investigation was to assess the effect of different surface treatments on the bond strength of veneering ceramics to zirconia. In a shear test, the influences of polishing, sandblasting, and silica-coating of the zirconia surface on bonding were assessed with five different veneering ceramics. In addition the effect of liner application was examined. With one veneering ceramic, the impact of regeneration firing of zirconia was also evaluated. Statistical analysis was performed with one-way ANOVA and post hoc Scheffé's test. Failure in every case occurred in the veneering ceramic adjacent to the interface with a thin layer of ceramic remaining on the zirconia surface, indicating that bond strength was higher than the cohesive strength of the veneering ceramic. Shear strength ranged from 23.5 +/- 3.4 MPa to 33.0 +/- 6.8 MPa without explicit correlation to the respective surface treatment. Regeneration firing significantly decreased the shear strength of both polished and sandblasted surfaces. Findings of this study revealed that bonding between veneering ceramics and zirconia might be based on chemical bonds. On this note, sandblasting was not a necessary surface pretreatment to enhance bond strength and that regeneration firing was not recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work is to non-destructively determine the residual stress profile in the bulk of two characteristic types of alumina-based composites, with the aim of improving their durability and structural integrity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este trabajo, materiales de tipo alúmina/Y-TZP (ZrO2 tetragonal, estabilizada con 3 mol. % Y2O3), como sistema cerámico popular por sus mejoradas propiedades mecánicas en comparación con las cerámicas de alúmina puras, han sido estudiados en términos de propiedades mecánicas y tensiones residuales. El novedoso método de colado en cinta, consistente en el apilamiento de cintas de cerámica verde a temperatura ambiente y el uso de bajas presiones, se ha escogido para la presente investigación con el fin de poder aprovechar al máximo el futuro desarrollo de materiales laminados de alúmina-óxido de circonio. Se han determinado las propiedades de los materiales obtenidos por este nuevo método de procesamiento comparándolas con las de los materiales obtenidos por “slip casting”, con el fin de analizar si el método propuesto afecta a la microestructura y, por tanto, a las propiedades mecánicas y tensiones residuales propias de estos materiales. Para analizar la idoneidad del proceso de fabricación, utilizado para evitar la presencia de discontinuidades en las intercaras entre las láminas así como otros fenómenos que puedan interferir con las propiedades mecánicas, se estudiaron materiales cerámicos con la misma composición en cintas. Por otra parte también se analizó el efecto de la adición de óxido de circonio sobre la aparición de tensiónes residuales en cerámicas Al2O3/Y-TZP, teniendo en cuenta su notable influencia sobre las propiedades microestructurales y mecánicas de los materiales, así como el requisito de co-sinterización de capas con diferentes materiales compuestos en materiales laminados. La caracterización del material incluye la determinación de la densidad, el análisis de la microestructura, la obtención de las propiedades mecánicas (módulo de elasticidad, dureza, resistencia a la flexión y tenacidad de fractura) así como de las tensiones residuales. En combinación con otros métodos de medida tradicionales, la nanoindentación también se empleó como una técnica adicional para la medida del módulo de elasticidad y de la dureza. Por otro lado, diferentes técnicas de difracción con neutrones, tanto las basadas en longitud de onda constante (CW) como en tiempo de vuelo (TOF), han sido empleadas para la medición fiable de la deformación residual a través del grosor en muestras a granel. Las tensiones residuales fueron determinadas con elevada precisión, aplicando además métodos de análisis apropiados, como por ejemplo el refinamiento de Rietveld. Las diferentes fases en cerámicas sinterizadas, especialmente las de zirconia, se examinaron con detalle mediante el análisis de Rietveld, teniendo en cuenta el complicado polimorfismo del Óxido de Zirconio (ZrO2) así como las posibles transformaciones de fase durante el proceso de fabricación. Los efectos del contenido de Y-TZP en combinación con el nuevo método de procesamiento sobre la microestructura, el rendimiento mecánico y las tensiones residuales de los materiales estudiados (Al2O3/Y-TZP) se resumen en el presente trabajo. Finalmente, los mecanismos de endurecimiento, especialmente los relacionados con las tensiones residuales, son igualmente discutidos. In present work, Alumina/Y-TZP (tetragonal ZrO2 stabilized with 3 mol% Y2O3) materials, as an popular ceramic system with improved mechanical properties compared with the pure alumina ceramics, have been studied in terms of mechanical properties and residual stresses. The novel tape casting method, which involved the stacking of green ceramics tapes at room temperature and using low pressures, is selected for manufacturing and investigation, in order to take full advantage of the future development of alumina-zirconia laminated materials. Features of materials obtained by the new processing method are determined and compared with those of materials obtained by conventional slip casting in a plaster mold, in order to study whether the proposed method of processing affects microstructure and thereby the mechanical properties and residual stresses characteristics of materials. To analyse the adequacy of the manufacturing process used to avoid the presence of discontinuities at the interfaces between the sheets and other phenomena that interfere with the mechanical properties, ceramic materials with the same composition in tapes were investigated. Moreover, the effect of addition of zirconia on residual stress development of Al2O3/Y-TZP ceramics were taken into investigations, considering its significantly influence on the microstructure and mechanical properties of materials as well as the requirement of co-sintering of layers with different composites in laminated materials. The characterization includes density, microstructure, mechanical properties (elastic modulus, hardness, flexure strength and fracture toughness) and residual stresses. Except of the traditional measurement methods, nanoindentation technique was also used as an additional measurement of the elastic modulus and hardness. Neutron diffraction, both the constant-wavelength (CW) and time-of-flight (TOF) neutron diffraction techniques, has been used for reliable through-thickness residual strain measurement in bulk samples. Residual stresses were precisely determined combined with appropriate analysis methods, e.g. the Rietveld refinement. The phase compositions in sintered ceramics especially the ones of zirconia were accurately examined by Rietveld analysis, considering the complex polymorph of ZrO2 and the possible phase transformation during manufacturing process. Effects of Y-TZP content and the new processing method on the microstructure, mechanical performance and residual stresses were finally summarized in present studied Al2O3/Y-TZP materials. The toughening mechanisms, especially the residual stresses related toughening, were theoretically discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Financial support of this research by The Royal Society, UK (IE121116), The Carnegie Trust for the Universities of Scotland, UK (Trust Reference 31747) and DFG (PI 785/3-2, PI 785/1-2), Germany, is gratefully acknowledged. We thank Dr. S. Roy (KIT) for providing the microstructure images and Professor I. Tsukrov (University of New Hampshire, USA) for helpful discussions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this dissertation was to investigate flexible polymer-nanoparticle composites with unique magnetic and electrical properties. Toward this goal, two distinct projects were carried out. The first project explored the magneto-dielectric properties and morphology of flexible polymer-nanoparticle composites that possess high permeability (µ), high permittivity (ε) and minimal dielectric, and magnetic loss (tan δε, tan δµ). The main materials challenges were the synthesis of magnetic nanoparticle fillers displaying high saturation magnetization (Ms), limited coercivity, and their homogeneous dispersion in a polymeric matrix. Nanostructured magnetic fillers including polycrystalline iron core-shell nanoparticles, and constructively assembled superparamagnetic iron oxide nanoparticles were synthesized, and dispersed uniformly in an elastomer matrix to minimize conductive losses. The resulting composites have demonstrated promising permittivity (22.3), permeability (3), and sustained low dielectric (0.1), magnetic (0.4) loss for frequencies below 2 GHz. This study demonstrated nanocomposites with tunable magnetic resonance frequency, which can be used to develop compact and flexible radio frequency devices with high efficiency. The second project focused on fundamental research regarding methods for the design of highly conductive polymer-nanoparticle composites that can maintain high electrical conductivity under tensile strain exceeding 100%. We investigated a simple solution spraying method to fabricate stretchable conductors based on elastomeric block copolymer fibers and silver nanoparticles. Silver nanoparticles were assembled both in and around block copolymer fibers forming interconnected dual nanoparticle networks, resulting in both in-fiber conductive pathways and additional conductive pathways on the outer surface of the fibers. Stretchable composites with conductivity values reaching 9000 S/cm maintained 56% of their initial conductivity after 500 cycles at 100% strain. The developed manufacturing method in this research could pave the way towards direct deposition of flexible electronic devices on any shaped substrate. The electrical and electromechanical properties of these dual silver nanoparticle network composites make them promising materials for the future construction of stretchable circuitry for displays, solar cells, antennas, and strain and tactility sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A really particular and innovative metal-polymer sandwich material is Hybrix. Hybrix is a product developed and manufactured by Lamera AB, Gothenburg, Sweden. This innovative hybrid material is composed by two relatively thin metal layers if compared to the core thickness. The most used metals are aluminum and stainless steel and are separated by a core of nylon fibres oriented perpendicularly to the metal plates. The core is then completed by adhesive layers applied at the PA66-metal interface that once cured maintain the nylon fibres in position. This special material is very light and formable. Moreover Hybrix, depending on the specific metal which is used, can achieve a good corrosion resistance and it can be cut and punched easily. Hybrix architecture itself provides extremely good bending stiffness, damping properties, insulation capability, etc., which again, of course, change in magnitude depending in the metal alloy which is used, its thickness and core thickness. For these reasons nowadays it shows potential for all the applications which have the above mentioned characteristic as a requirement. Finally Hybrix can be processed with tools used in regular metal sheet industry and can be handled as solid metal sheets. In this master thesis project, pre-formed parts of Hybrix were studied and characterized. Previous work on Hybrix was focused on analyze its market potential and different adhesive to be used in the core. All the tests were carried out on flat unformed specimens. However, in order to have a complete description of this material also the effect of the forming process must be taken into account. Thus the main activities of the present master thesis are the following: Dynamic Mechanical-Thermal Analysis (DMTA) on unformed Hybrix samples of different thickness and on pre-strained Hybrix samples, pure epoxy adhesive samples analysis and finally moisture effects evaluation on Hybrix composite structure.