952 resultados para polymer matrix


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymer hydrogels based upon methacrylates are used extensively in the pharmaceutical industry, particularly as controlled release drug delivery systems. These materials are generally prepared by chemically initiated polymerization, but this can lead to the presence of unwanted initiator fragments in the polymer matrix. In the present work, initiation of polymerization by gamma-irradiation of hydroxyethyl methacrylate, with and without added crosslinkers, has been investigated, and the diffusion coefficients for water in the resulting polymers have been measured through mass uptake by the polymers. The diffusion of water in poly(hydroxyethyl methacrylate) at 310 K was found to be Fickian, with a diffusion coefficient of 1.96 +/- 0.1 x 10(11) m(2) s(-1) and an equilibrium water content of 58%, NMR imaging analyses confirmed the adherance to a Fickian model of the diffusion of water into polymer cylinders. The incorporation of small amounts (0.2-0.5 wt%) of added ethyleneglycol-dimethacrylate-based crosslinkers was found to have only a small effect on the diffusion coefficient and the equilibrium water content for the copolymers. (C) 1999 Society of Chemical Industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

0Nuclear magnetic resonance (n.m.r.) imaging was used to study the ingress of water into poly(tetrahydrofurfuryl methacrylate-co-hydroxyethyl methacrylate). The study offers strong evidence that the diffusion is Fickian in nature. The diffusion coefficient, D, obtained by fitting the underlying diffusion profile, attainable from the images, according to the equation for Fickian diffusion, is 1.5 x 10(-11) m(2) s(-1), which is in good correlation with the value of 2.1 x 10(-11) m(2) s(-1), obtained from mass uptake measurements. Additionally, from the T-2-weighted images, Superimposed features observed in addition to the underlying Fickian diffusion profiles were shown to have a longer spin-spin relaxation time, T-2. This Suggests the presence of two types of water within the polymer matrix; a less mobile phase of absorbed water that is interacting strongly with the polymer matrix and a more mobile phase of absorbed water residing within the cracks observed in the environmental scanning electron micrograph. (C) 1997 Elsevier Science Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A biofilm is a complex community of surface-associated cells enclosed in a polymer matrix. They attach to solid surfaces and their formation can be affected by growth conditions and co-infection with other pathogens. The presence of biofilm may protect the microorganisms from host defenses, as well as significantly reduce their susceptibility to antifungal agents. Pathogenic microbes can form biofilms on the inert surfaces of implanted devices such as catheters, prosthetic cardiac valves and intrauterine devices (IUDs). The present study was carried out to analyze the presence of biofilm on the surface of intrauterine devices in patients with recurrent vulvovaginal candidiasis, and to determine the susceptibility profile of the isolated yeasts to amphotericin B and fluconazole. Candida albicans was recovered from the IUDs and it was found to be susceptible to the antifungal agents when tested under planktonic growing conditions. These findings indicate the presence of the biofilm on the surface of the IUD as an important risk factor for recurrent vulvovaginal candidiasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main objective of the present study is to assess the environmental advantages of substituting aluminium for a polymer composite in the manufacture of a structural product (a frame to be used as a support for solar panels). The composite was made of polypropylene and a recycled tyres’ rubber granulate. Analysis of different composite formulations was performed, to assess the variation of the environmental impact with the percentage of rubber granulate incorporation. The results demonstrate that the decision on which of the two systems (aluminium or composite) has the best life cycle performance is strongly dependent on the End-of Life (EoL) stage of the composite frame. When the EoL is deposition in a landfill, the aluminium frame performs globally better than its composite counterpart. However, when it is incineration with energy recovery or recycling, the composite frame is environmentally preferable. The raw material production stage was found to be responsible for most of the impacts in the two frame systems. In that context, it was shown that various benefits can accrue in several environmental impact categories by recycling rubber tyres and using the resulting materials. This is in a significant part also due to the recycling of the steel in the tyres. The present work illustrates how it is possible to minimize the overall environmental impact of consumer products through the adequate selection of their constitutive materials in the design stage. Additionally it demonstrates how an adequate EoL planning can be an important issue when developing a sustainable product, since it can highly influence its overall life cycle performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The origin of the electrical response of vapor grown carbon nanofiber (VGCNF) + epoxy composites is investigated by studying the electrical behavior of VGCNF with resin, VGCNF with hardener and cured composites, separately. It is demonstrated that the onset of the conductivity is associated to the emergence of a weak disorder regime. It is also shown that the weak disorder regime is related to a hopping depending on the physical properties of the polymer matrix.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermoplastic elastomer/carbon nanotube composites are studied for sensor applications due to their excellent mechanical and electrical properties. Piezoresisitive properties of tri-block copolymer styrene-butadiene-styrene (SBS)/ carbon nanotubes (CNT) prepared by solution casting have been investigated. Young modulus of the SBS/CNT composites increases with the amount of CNT filler content present in the samples, without losing the high strain deformation on the polymer matrix (~1500 %). Further, above the percolation threshold these materials are unique for the development of large deformation sensors due to the strong piezoresistive response. Piezoresistive properties evaluated by uniaxial stretching in tensile mode and 4-point bending showed a Gauge Factors up to 120. The excellent linearity obtained between strain and electrical resistance makes these composites interesting for large strain piezoresistive sensors applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O3,([PVDF]1−x/[PZT]x) composites of volume fractions x and (0–3) type connectivity were prepared in the form of thin films. PZT powders with average grain sizes of 0.2, 0.84, and 2.35 μm in different volume fraction of PZT up to 40 % were mixed with the polymeric matrix. The influence of the inorganic particle size and its content on the thermal degradation properties of the composites was then investigated by means of thermo-gravimetric analysis. It is observed that filler size affects more than filler concentration the degradation temperature and activation energy of the polymer. In the same way and due to their larger specific area, smaller particles leave larger solid residuals after the polymer degradation. The polymer degradation mechanism is not significantly modified by the presence of the inorganic fillers. On the other hand, an inhibition effect occurs due to the presence of the fillers, affecting particularly the activation energy of the process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The variation of the physical properties of four differ- ent carbon nanofibers (CNFs), based-polymer nano- composites incorporated in the same polypropylene (PP) matrix by twin-screw extrusion process was investigated. Nanocomposites fabricated with CNFs with highly graphitic outer layer revealed electrical isolation-to-conducting behaviors as function of CNF’s content. Nanocomposites fabricated with CNFs with an outer layer consisting on a disordered pyro- litically stripped layer, in contrast, revealed better mechanical performance and enhanced thermal sta- bility. Further, CNF’s incorporation into the polymer increased the thermal stability and the degree of crystallinity of the polymer, independently on the filler content and type. In addition, dispersion of the CNFs’ clusters in PP was analyzed by transmitted light opti- cal microscopy, and grayscale analysis (GSA). The results showed a correlation between the filler concentration and the variance, a parameter which measures quantitatively the dispersion, for all composites. This method indicated a value of 1.4 vol% above which large clusters of CNFs cannot be dispersed effectively and as a consequence only slight changes in mechanical performance are observed. Finally, this study establishes that for tailoring the physical properties of CNF based-polymer nanocomposites, both adequate CNFs structure and content have to be chosen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mestrado em Engenharia Química - Ramo Otimização Energética na Indústria Química

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertation presented at Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa to obtain the Degree of Master in Chemical and Biochemical Engineering

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A pultrusão é uma técnica já sobejamente conhecida de produção de perfis de secção constante, tais como barras, cantoneiras, perfis estruturais ou tubos, em materiais compósitos de matriz polimérica. A necessidade de, em determinadas aplicações, utilizar perfis que proporcionem melhor isolamento térmico, melhor isolamento acústico ou possuam um momento de inércia ligeiramente superior, sem que o peso próprio seja significativamente afectado, levou à produção de perfis pultrudidos híbridos, com núcleos baseados em pré-formas ou na alimentação contínua de resíduos. Realizados os protótipos seguindo as metodologias acima descritas, urge verificar se as propriedades dos perfis híbridos correspondem às expectativas inicialmente neles depositadas, através de testes destrutivos e não-destrutivos. Assim, foram realizados testes à tracção, à compressão e à flexão, no intuito de verificar os ganhos conseguidos e poder analisar o valor-acrescentado trazido por estes novos perfis em termos estruturais. Estes valores, depois de devidamente validados, permitirão a sua inserção em bases de dados agregadas a programas de cálculo estrutural, que efectuam de forma automática o dimensionamento de estruturas baseadas em perfis desta natureza. Complementarmente, foram realizados testes de isolamento térmico e acústico, com vista a quantificar a melhoria conseguida nestas propriedades, extremamente importantes em determinados tipos de aplicações ligadas à construção civil e obras públicas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bioactive glass nanoparticles (BGNPs) promote an apatite surface layer in physiologic conditions that lead to a good interfacial bonding with bone.1 A strategy to induce bioactivity in non-bioactive polymeric biomaterials is to incorporate BGNPs in the polymer matrix. This combination creates a nanocomposite material with increased osteoconductive properties. Chitosan (CHT) is a polymer obtained by deacetylation of chitin and is biodegradable, non-toxic and biocompatible. The combination of CHT and the BGNPs aims at designing biocompatible spheres promoting the formation of a calcium phosphate layer at the nanocomposite surface, thus enhancing the osteoconductivity behaviour of the biomaterial. Shape memory polymers (SMP) are stimuli-responsive materials that offer mechanical and geometrical action triggered by an external stimulus.2 They can be deformed and fixed into a temporary shape which remains stable unless exposed to a proper stimulus that triggers recovery of their original shape. This advanced functionality makes such SMPs suitable to be implanted using minimally invasive surgery procedures. Regarding that, the inclusion of therapeutic molecules becomes attractive.  We propose the synthesis of shape memory bioactive nanocomposite spheres with drug release capability.3   1.  L. L. Hench, Am. Ceram. Soc. Bull., 1993, 72, 93-98. 2.  A. Lendlein and S. Kelch, Angew Chem Int Edit, 2002, 41, 2034-2057. 3.  Ã . J. Leite, S. G. Caridade and J. F. Mano, Journal of Non-Crystalline Solids (in Press)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Programa Doutoral em Engenharia Têxtil.