937 resultados para polarized optical microscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The triblock copolymers, poly(styrene-b-isoprene-b-epsilon-caprolactone)s (PS-b-PI-b-PCL) have been synthesized successfully by combination of anionic polymerization and ring-opening polymerization. Diblock copolymer capped with hydroxyl group, PS-b-PI-OH was synthesized by sequential- anionic polymerization of styrene and isoprene and following end-capping reaction of EO, and then it was used as macro initiator in the ring-opening polymerization of CL. The results of DSC and WAXD show big effect of amorphous PS-b-PI on the thermal behaviors of PCL block in the triblock copolymers and the lower degree of crystalline in the triblock copolymer with higher molecular weight of PS-b-PI was observed. The real-time observation on the polarized optical microscopy shows the spherulite growth rates of PCL27, PCL328 and PS-b-PI-b-PCL344 are 0.71, 0.46 and 0.07 mu m s(-1), respectively. The atomic force microscopy (AFM) images of the PS90-b-PI66-b-PCL-(28) show the columns morphology formed by it's self-assembling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, melt blends of poly(propylene carbonate) (PPC) with poly(butylene succinate) (PBS) were characterized by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), tensile testing, wide-angle X-ray diffraction (WAXD), polarized optical microscopy and thermogravimetric analysis (TGA). The results indicated that the glass transition temperature of PPC in the 90/10 PPC/PBS blend was decreased by about 11 K comparing with that of pure PPC. The presence of 10% PBS was partially miscible with PPC. The 90/10 PPC/PBS blend had better impact and tensile strength than those of the other PPC/PBS blends. The glass transition temperature of PPC in the 80/20, 70/30, and 60/40 PPC/PBS blends was improved by about 4.9 K, 4.2 K, and 13 K comparing with that of pure PPC, respectively; which indicated the immiscibility between PPC and PBS. The DSC results indicated that the crystallization of PBS became more difficult when the PPC content increased. The matrix of PPC hindered the crystallization process of PBS. While the content of PBS was above 20%, significant crystallization-induced phase separation was observed by polarized optical microscopy. It was found from the WAXD analysis that the crystal structure of PBS did not change, and the degree of crystallinity increased with increasing PBS content in the PPC/PBS blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization behavior of two kinds of commercial poly(propylene-co-ethylene)s (PPE1, PPE2) with similar average molecular weight and molecular weight distribution, isotacticity and copolymerized ethylene unit content and their fractions was investigated by differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and polarized optical microscopy (POM) techniques. The results indicate that the PPE1 isothermally crystallized films possess thicker and less cross-hatched lamellar structure than those of the PPE2. As for the fractionated samples, the thin films of low temperature (less than or equal to 90 degreesC) fractions (PPE1-80, PPE2-80) of both PPE1 and PPE2 exhibit similar crystallization behavior, while for the high temperature ( greater than or equal to 95 degreesC) fractions (PPE1-108, PPE2-108), the crystalline morphology has marked differences. Compared with PPE2-108, the PPE1-108 isothermally crystallized thin films possess thicker lamellae and less crosshatched lamellar structure, while for the fibrous crystal number, the former is less than that of the latter. The main reason to create the crystallization behavior differences between the two PPEs and their fractions is due to the effect of molecular chain structure, i.e. the different distribution of copolymerized ethylene unit in polypropylene chains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isothermal and non-isothermal crystallization processes of nylon 1212 were investigated by polarized optical microscopy. The crystal growth rates of nylon 1212 measured in isothermal conditions at temperatures ranged from 182 to 132 degreesC are well comparable with those measured by non-isothermal procedures (cooling rates ranged from 0.5 to 11 degreesC/min). The kinetic data were examined with the Hoffman-Lauritzen nucleation theory on the basis of the obtained values of the thermodynamic parameters of nylon 1212. The classical regime I --> II and regime II --> III transitions occur at the temperatures of 179 and 159 degreesC, respectively. The crystal growth parameters were calculated with (100) plane assumed to be the growth plane. The regime I --> II --> III transition is accompanied by a morphological transition from elliptical-shaped structure to banded spherulite and then non-banded spherulite. The development of morphology during isothermal and non-isothermal processes shows a good agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isothermal and non-isothermal melt-crystallization kinetics of nylon 1212 were investigated by differential scanning calorimetry. Primary and secondary crystallization behaviors were analysed based on different approaches. The results obtained suggested that primary crystallization under isothermal conditions involves three-dimensional spherulite growth initiated by athermal nucleation, while under non-isothermal conditions, the mechanism of primary crystallization is more complex. Secondary crystallization displays a lower-dimensional crystal growth, both in the isothermal and non-isothermal processes. The crystallite morphology of nylon 1212, isothermally crystallized at various temperatures, was observed by polarized optical microscopy. The activation energies of crystallization under isothermal and non-isothermal conditions were also calculated based on different approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization behavior of crystalline-crystalline diblock copolymer containing poly(ethylene oxide) (PEO) and poly(epsilon-caprolactone) (PCL), in which the weight fraction of PCL is 0.815, has been studied via differential scanning calorimeter (DSC), wide-angle X-ray diffraction (WAXD), and polarized optical microscopy (POM). DSC and WAXD indicated that both PEO and PCL blocks crystallize in the block copolymer. POM revealed a ring-banded spherulite morphology or the PEO-b-PCL diblock copolymer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electric-field-induced molecular alignments of side-chain liquid-crystalline polyacetylenes [-{HC=C[(CH2)(m)OCO-biph-OC7H15]}-, where biph is 4,4'-biphenylyl and m is 3 (PA3EO7) or 9 (PA9EO7)] were studied with X-ray diffraction and polarized optical microscopy. An orientation as high as 0.84 was obtained for PA9EO7. Furthermore, the molecular orientation of]PA9EO7 was achieved within a temperature range between the isotropic-to-smectic A transition temperature and 115 degreesC, and this suggested that the orientational packing was affected by the thermal fluctuation of the isotropic liquid and the mobility of the mesogenic moieties. The maximum achievable orientation for PA9EO7 was much greater than that for PA3EO7. This was the first time that the electric-field-induced molecular orientation of a side-chain liquid-crystalline polymer with a stiff backbone was studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystallization behavior, structural development and morphology evolution in a series of diblock copolymers Of poly(L-lactide)-blockpoly(ethylene glycol) (PLLA-b-PEG) were investigated via differential scanning calorimetry, wide-angle X-ray diffraction, polarized optical microscopy and atomic force microscopy. In these copolymers, both blocks are crystallizable and biocompatible. It was interesting that these PLLA-b-PEG diblock copolymers could form spherulites with banded textures, which was undercooling dependent. Single crystals with an abundance of screw dislocations were also observed via AFM. Such results indicated that these ringed spherulites and single crystals were formed during the crystallization of the PLLA blocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various metal-chitosan nanocomposites were synthesized, including silver (Ag), gold (Au), platinum (Pt), and palladium (Pd) in aqueous solutions. Metal nanoparticles were formed by reduction of corresponding metal salts with NaBH4 in the presence of chitosan. And chitosan molecules adsorbing onto the surface of as-prepared metal nanoparticles formed the corresponding metal-chitosan nanocomposites. Transmission electron microscopy (TEM) images and UV-vis spectra of the nanocomposites revealed the presence of metal nanoparticles. Comparison of all the resulting particles size, it shows that silver nanoparticles are much larger than others (Au, Pt and Pd). In addition, the difference in particles size leads to develop different morphologies in the films cast from prepared metal-chitosan nanocomposites. Polarized optical microscopy (POM) images show a batonet-like structure for Ag-chitosan nanocomposites film, while for the films cast from other metal (Au, Pt, and Pd)-chitosan nanocomposites, some branched-like structures with a few differences among them were observed under POM observation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isothermal crystallization kinetics and morphology of the poly(L-lactide) block in poly(L-lactide)poly(ethylene glycol) diblock copolymers were studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM), respectively. The results were compared with that of the PLLA homopolymer. The introduction of the PEG block accelerated the crystallization rate of the PLLA block and promoted to form ring-banded spherulites. The analysis of isothermal crystallization kinetics has shown that the PLLA homopolymer accorded with the Avrami equation. But the PLLA block of the diblock copolymers deviated from the Avrami equation, which resulted from increasing of the crystallization rate and occurring of the second crystallization process. The equilibrium melting temperature (T,,) of the PLLA block fell with its molecular weight decreasing. The conditions to obtain more regular ring-banded spherulites were below: the sample was the PLLA block of LA(5) EG(5); the crystallization temperature was about from 95 degrees C to 100 degrees C, which almost corresponded to regime II.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isothermal crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was investigated by means of differential scanning calorimetry and polarized optical microscopy (POM). The Avrami analysis can be used successfully to describe the isothermal crystallization kinetics of PHBV, which indicates that the Avrami exponent n = 3 is good for all the temperatures investigated. The spherulitic growth rate, G, was determined by POM. The result shows that the G has a maximum value at about 353 K. Using the equilibrium melting temperature (448 K) determined by the Flory equation for melting point depression together with U-* = 1500 cal mol(-1), T-infinity = 30 K and T-g = 278 K, the nucleation parameter K-g was determined, which was found to be 3.14+/-0.07 x 10(5) (K-2), lower than that for pure PHB. The surface-free energy sigma = 2.55 x 10(-2) J m(-2) and sigma(e) = 2.70+/-0.06 x 10-2 J m(-2) were estimated and the work of chain-folding (q = 12.5+/-0.2 kJ mol(-1)) was derived from sigma(e), and found to be lower than that for PHB. This implies that the chains of PHBV are more flexible than that of PHB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blends of synthetic poly(propylene carbonate) (PPC) with a natural bacterial copolymer of 3-hydroxybutyrate with 3-hydroxyvalerate (PHBV) containing 8 mol % 3-hydroxyvalerate units were prepared with a simple casting procedure. PPC was thermally stabilized by end-capping before use. The miscibility, morphology, and crystallization behavior of the blends were investigated by differential scanning calorimetry, polarized optical microscopy, wide-angle X-ray diffraction (WAXD), and small-angle Xray scattering (SAXS). PHBV/PPC blends showed weak miscibility in the melt, but the miscibility was very low. The effect of PPC on the crystallization of PHBV was evident. The addition of PPC decreased the rate of spherulite growth of PHBV, and with increasing PPC content in the PHBV/PPC blends, the PHBV spherulites became more and more open. However, the crystalline structure of PHBV did not change with increasing PPC in the PHBV/PPC blends, as shown from WAXD analysis. The long period obtained from SAXS showed a small increase with the addition of PPC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conducting polyaniline-poly(ethylene oxide) blends were prepared from their aqueous solutions. The blends displayed an electrical conductivity percolation threshold as low as 1.83 wt % of polyaniline loading. As demonstrated by scanning electron microscopy, polarized optical microscopy, and wide-angle X-ray diffraction studies, the conducting polyaniline took a fibrillar morphology in the blend, and it existed only in the amorphous phase of poly(ethylene oxide). A three-phase model combining morphological factors instead of a two-phase model was proposed to explain the low-conductivity percolation threshold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crosslinkable side-chain liquid crystalline polyesters PCn from N-[n-(4-(4-nitrophenylazo)phenyloxy)alkyl]diethanolamine (Cn, n = 3, 5, 6, 10) as mesogenic monomers and maleic anhydride were synthesized and characterized. The thermal properties of PCn's were studied by means of DSC, polarized optical microscopy (POM) and wide angle X-ray diffraction (WAXD), and the results showed that all the polymers studied exhibit enantiotropic liquid crystallinity. In the molar mass independent region, the relatively high content of cis -CH=CH- groups in the polymer backbone of PC3 causes an increase of the melting temperature (T-m) and a decrease of T-g and isotropisation temperature (T-i). The crosslinking of PCn in the radical polymerization with styrene was confirmed by FTIR spectroscopy. The absorption band at 1300 cm(-1) attributed to the in-plane C-H-bending vibration of trans -CH=CH- in the polymer backbone disappeared after crosslinking, indicating that the trans -CH=CH- functions are consumed in the crosslinking polymerization of styrene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The miscibility, crystallization behavior and morphological structure of PHB/PMA blends have been studied by the differential scanning calorimeter (DSC) and polarized optical microscopy (POM). The chemical repeat units of the two components of the blend are isomers. The results indicate that PHB and PMA are miscible in the melt. The addition of PMA into PHB results in a depression in the spherulite growth rate of PHB. With increasing PMA content in the blends, the texture of PHB spherulite becomes more open.