962 resultados para plasmid DNA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of the work was to compare critically the radiosensitivity of the supercoiled and relaxed forms of a plasmid DNA system commonly used in DNA damage assays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Theoretical modelling techniques are often used to simulate the action of ionizing radiations on cells at the nanometre level, Using monoenergetic vacuum-UV (VUV) radiation to irradiate DNA either dry or humidified, the action spectra for the induction of DNA damage by low energy photons and the role of water and can be studied. These data provide inputs for the theoretical models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To measure action spectra for the induction of single- strand breaks (SSB) and double-strand breaks (DSB) in plasmid DNA by low-energy photons and provide estimates for the energy dependence of strand-break formation important for track-structure simulations of DNA damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prospectively studied the course of colonization and sepsis with Staphylococcus epidermidis among 29 very low birth weight neonates undergoing prolonged umbilical catheterization. S. epidermidis bacteremia occurred in 7 patients. In 6 bacteremia was preceded by positive colonization cultures. Isolates obtained from nares, base of umbilicus, umbilical catheter entry sites, catheter tips and blood were examined for plasmid DNA profiles. In 4 patients the plasmid profiles of the catheter entry site isolates were identical with those of the blood isolates. In the other 3 bacteremic patients plasmid profiles of the catheter entry site and blood isolates were different. No correlation was observed in the plasmid DNA patterns of isolates obtained from catheter tip cultures as compared to the corresponding blood cultures. The blood isolates from bacteremic patients had different plasmid profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations. © 2012 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nature and kinetics of plasmid DNA damage after DNA exposure to a kHz-driven atmospheric pressure nonthermal plasma jet has been investigated. Both single-strand break (SSB) and double-strand break (DSB) processes are reported here. While SSB had a higher rate constant, DSB is recognized to be more significant in living systems, often resulting in loss of viability. In a helium-operated plasma jet, adding oxygen to the feed gas resulted in higher rates of DNA DSB, which increased linearly with increasing oxygen content, up to an optimum level of 0.75% oxygen, after which the DSB rate decreased slightly, indicating an essential role for reactive oxygen species in the rapid degradation of DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ease of production and manipulation has made plasmid DNA a prime target for its use in gene transfer technologies such as gene therapy and DNA vaccines. The major drawback of plasmid however is its stability within mammalian cells. Plasmid DNA is usually lost by cellular mechanisms or as a result of mitosis by simple dilution. This study set out to search for mammalian genomic DNA sequences that would enhance the stability of plasmid DNA in mammalian cells.Creating a plasmid based genomic DNA library, we were able to screen the human genome by transfecting the library into Human Embryonic Kidney (HEK 293) Cells. Cells that contained plasmid DNA were selected, using G418 for 14 days. The resulting population was then screened for the presence of biologically active plasmid DNA using the process of transformation as a detector.A commercially available plasmid DNA isolation kit was modified to extract plasmid DNA from mammalian cells. The standardized protocol had a detection limit of -0.6 plasmids per cell in one million cells. This allowed for the detection of 45 plasmids that were maintained for 32 days in the HEK 293 cells. Sequencing of selected inserts revealed a significantly higher thymine content in comparison to the human genome. Sequences with high A/T content have been associated with Scaffold/Matrix Attachment Region (S/MAR) sequences in mammalian cells. Therefore, association with the nuclear matrix might be required for the stability of plasmids in mammalian cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase diagrams of poly(ethylene glycol)/polyacrylate/Na2SO4 systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coil can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coil homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na2SO4-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to assess a new strategy of DNA vaccine for a more complete understanding of its action in immune response, it is important to determine the in vivo biodistribution fate and antigen expression. In previous studies, our group focused on the prophylactic and therapeutic use of a plasmid DNA encoding the Mycobacterium leprae 65-kDa heat shock protein (Hsp65) and achieved an efficient immune response induction as well as protection against virulent M. tuberculosis challenge. In the present study, we examined in vivo tissue distribution of naked DNA-Hsp65 vaccine, the Hsp65 message, genome integration and methylation status of plasmid DNA. The DNA-Hsp65 was detectable in several tissue types, indicating that DNA-Hsp65 disseminates widely throughout the body. The biodistribution was dose-dependent. In contrast, RT-PCR detected the Hsp65 message for at least 15 days in muscle or liver tissue from immunized mice. We also analyzed the methylation status and integration of the injected plasmid DNA into the host cellular genome. The bacterial methylation pattern persisted for at least 6 months, indicating that the plasmid DNA-Hsp65 does not replicate in mammalian tissue, and Southern blot analysis showed that plasmid DNA was not integrated. These results have important implications for the use of DNA-Hsp65 vaccine in a clinical setting and open new perspectives for DNA vaccines and new considerations about the inoculation site and delivery system. © 2006 Coelho-Castelo et al; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cationic lipids have been used in the development of non-viral gene delivery systems as lipoplexes. Stearylamine, a cationic lipid that presents a primary amine group when in solution, is able to compact genetic material by electrostatic interactions. In dispersed systems such as nanoemulsions this lipid anchors on the oil/water interface confering a positive charge to them. The aim of this work was to evaluate factors that influence DNA compaction in cationic nanoemulsions containing stearylamine. The influence of the stearylamine incorporation phase (water or oil), time of complexation, and different incubation temperatures were studied. The complexation rate was assessed by electrophoresis migration on agarose gel 0.7%, and nanoemulsion and lipoplex characterization was done by Dynamic Light Scattering (DLS). The results demonstrate that the best DNA compaction process occurs after 120 min of complexation, at low temperature (4 ± 1 °C), and after incorporation of the cationic lipid into the aqueous phase. Although the zeta potential of lipoplexes was lower than the results found for basic nanoemulsions, the granulometry did not change. Moreover, it was demonstrated that lipoplexes are suitable vehicles for gene delivery. © 2012 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase diagrams of poly(ethylene glycol)/polyacrylate/Na2SO4 systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coil can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coil homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na2SO4-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Although plasmid DNA encoding an antigen from pathogens or tumor cells has been widely studied as vaccine, the use of plasmid vector (without insert) as therapeutic agent requires further investigation. Results: Here, we showed that plasmid DNA (pcDNA3) at low doses inhibits the production of IL-6 and TNF-alpha by lipopolysaccharide (LPS)-stimulated macrophage cell line J774. These findings led us to evaluate whether plasmid DNA could act as an anti-inflammatory agent in a Wistar rat endotoxemia model. Rats injected simultaneously with 1.5 mg/kg of LPS and 10 or 20 mu g of plasmid DNA had a remarkable attenuation of mean arterial blood pressure (MAP) drop at 2 hours after treatment when compared with rats injected with LPS only. The beneficial effect of the plasmid DNA on MAP was associated with decreased expression of IL-6 in liver and increased concentration of plasma vasopressin (AVP), a known vasoconstrictor that has been investigated in hemorrhagic shock management. No difference was observed in relation to nitric oxide (NO) production. Conclusion: Our results demonstrate for the first time that plasmid DNA vector at low doses presents anti-inflammatory property and constitutes a novel approach with therapeutic potential in inflammatory diseases.