972 resultados para plasma light propagation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A low power consumption 2 x 2 thermo-optic switch with fast response was fabricated on silicon-on-insulator by anisotropy chemical etching. Blocking trenches were etched on both sides of the phase-shifting arms to shorten device length and reduce power consumption. Thin top cladding layer was grown to reduce power consumption and switching time. The device showed good characteristics, including a low switching power of 145 mW and a fast switching speed of 8 +/- 1 mus, respectively. Two-dimensional finite element method was applied to simulate temperature field in the phase-shifting arm instead of conventional one-dimensional method. According to the simulated result, a new two-dimensional index distribution of phase-shifting arm was determined. Consequently finite-difference beam propagation method was employed to simulate the light propagation in the switch, and calculate the power consumption as well as the switching speed. The experimental results were in good agreement with the theoretical estimations. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present fabrication and experimental measurement of a series of photonic crystal waveguides. The complete devices consist of an injector taper down from 3 mu m into a triangular-lattice air-hole single-line-defect waveguide with lattice constant from 410nm to 470nm and normalized radius 0.31. We fabricate these devices on a siliconon-insulator substrate and characterize them using a tunable laser source over a wavelength range from 1510nm to 1640nm. A sharp attenuation at photonic crystal waveguide mode edge is observed for most structures. The edge of guided band is shifted about 30nm with the 10nm increase of the lattice constant. We obtain high-efficiency light propagation and broad flat spectrum response of the photonic crystal waveguides.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A one-to-two splitter for self-collimated beams in photonic crystal (PC) is designed by inserting one row of line defects. Finite-difference time-domain (FDTD) method is used to simulate the light propagation process. Our systematical studies show that the splitting ratio is a function of the airholes size of the line defect radius, and stays fairly constant as a function of frequency. Furthermore, it is shown the numerical results can be analyzed by coupled-mode theory. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present fabrication and experimental measurement of a series of photonic crystal waveguides and coupled structure of PC waveguide and PC micro-cavity. The complete devices consist of an injector taper down from 3 mu m into a triangular-lattice air-holes single-line-defect waveguide. We fabricated these devices on a silicon-on-insulator substrate and characterized them using tunable laser source. We've obtained high-efficiency light propagation and broad flat spectrum response of photonic-crystal waveguides. A sharp attenuation at photonic crystal waveguide mode edge was observed for most structures. The edge of guided band is shifted about 31 nm with the 10 nm increase of lattice constant. Mode resonance was observed in coupled structure. Our experimental results indicate that the optical spectra of photonic crystal are very sensitive to structure parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dressed four- and six-wave mixings in a V-type four-level system are considered. Under two different dressed conditions, two- and three-photon resonant Autler-Townes splittings, accompanied by enhancement and suppression of wave mixing signal, are obtained analytically. Meanwhile, an electromagnetic induced transparency of multi-wave mixing is presented, which shows multiple peaks and asymmetric effects caused by one-photon, two-photon and three-photon resonances, separately. The slow light propagation multiple region of multi-wave mixing signal is also obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a detail investigation on the development of a series of gradient index (GRIN) optical glass microlens and polymer microlens and microlens arrays in our laboratory in recent years. The special glass material GRIN lenses have been fabricated mainly by using ion-exchange technology, which are applied to construct micro-optic devices and other applications. On one hand, we demonstrated the light propagation and imaging properties of GRIN lenses and the results analyzed. On the other hand, we have explored a drop-on-demand ink-jet printing method to produce microlens array using nano-scale polymer droplets involved with a uniform ultraviolet light and heat solidifying process. The experimental setup for manufacturing polymer microlens array and the performance of refractive microlens elements are also given in this paper. (C) 2006 Elsevier GmbH. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons-comprising an antiproton, an antineutron, and an antilambda hyperon-produced by colliding gold nuclei at high energy. Our analysis yields 70 +/- 17 antihypertritons (3/Lambda(H) over bar) and 157 +/- 30 hypertritons (H-3(Lambda)). The measured yields of H-3(Lambda) (3/Lambda(H) over bar) and He-3 ((3)(He) over bar) are similar, suggesting an equilibrium in coordinate and momentum space populations of up, down, and strange quarks and antiquarks, unlike the pattern observed at lower collision energies. The production and properties of antinuclei, and of nuclei containing strange quarks, have implications spanning nuclear and particle physics, astrophysics, and cosmology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acousto-optic imaging (AOI) in optically diffuse media is a hybrid imaging modality in which a focused ultrasound beam is used to locally phase modulate light inside of turbid media. The modulated optical field carries with it information about the optical properties in the region where the light and sound interact. The motivation for the development of AOI systems is to measure optical properties at large depths within biological tissue with high spatial resolution. A photorefractive crystal (PRC) based interferometry system is developed for the detection of phase modulated light in AOI applications. Two-wave mixing in the PRC creates a reference beam that is wavefront matched to the modulated optical field collected from the specimen. The phase modulation is converted to an intensity modulation at the optical detector when these two fields interfere. The interferometer has a high optical etendue, making it well suited for AOI where the scattered light levels are typically low. A theoretical model for the detection of acoustically induced phase modulation in turbid media using PRC based interferometry is detailed. An AOI system, using a single element focused ultrasound transducer to pump the AO interaction and the PRC based detection system, is fabricated and tested on tissue mimicking phantoms. It is found that the system has sufficient sensitivity to detect broadband AO signals generated using pulsed ultrasound, allowing for AOI at low time averaged ultrasound output levels. The spatial resolution of the AO imaging system is studied as a function of the ultrasound pulse parameters. A theoretical model of light propagation in turbid media is used to explore the dependence of the AO response on the experimental geometry, light collection aperture, and target optical properties. Finally, a multimodal imaging system combining pulsed AOI and conventional B- mode ultrasound imaging is developed. B-mode ultrasound and AO images of targets embedded in both highly diffuse phantoms and biological tissue ex vivo are obtained, and millimeter resolution is demonstrated in three dimensions. The AO images are intrinsically co-registered with the B-mode ultrasound images. The results suggest that AOI can be used to supplement conventional B-mode ultrasound imaging with optical information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Asymmetry in the collective dynamics of ponderomotively-driven electrons in the interaction of an ultraintense laser pulse with a relativistically transparent target is demonstrated experimentally. The 2D profile of the beam of accelerated electrons is shown to change from an ellipse aligned along the laser polarization direction in the case of limited transparency, to a double-lobe structure aligned perpendicular to it when a significant fraction of the laser pulse co-propagates with the electrons. The temporally-resolved dynamics of the interaction are investigated via particle-in-cell simulations. The results provide new insight into the collective response of charged particles to intense laser fields over an extended interaction volume, which is important for a wide range of applications, and in particular for the development of promising new ultraintense laser-driven ion acceleration mechanisms involving ultrathin target foils.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is addressed to the numerical solving of the rendering equation in realistic image creation. The rendering equation is integral equation describing the light propagation in a scene accordingly to a given illumination model. The used illumination model determines the kernel of the equation under consideration. Nowadays, widely used are the Monte Carlo methods for solving the rendering equation in order to create photorealistic images. In this work we consider the Monte Carlo solving of the rendering equation in the context of the parallel sampling scheme for hemisphere. Our aim is to apply this sampling scheme to stratified Monte Carlo integration method for parallel solving of the rendering equation. The domain for integration of the rendering equation is a hemisphere. We divide the hemispherical domain into a number of equal sub-domains of orthogonal spherical triangles. This domain partitioning allows to solve the rendering equation in parallel. It is known that the Neumann series represent the solution of the integral equation as a infinity sum of integrals. We approximate this sum with a desired truncation error (systematic error) receiving the fixed number of iteration. Then the rendering equation is solved iteratively using Monte Carlo approach. At each iteration we solve multi-dimensional integrals using uniform hemisphere partitioning scheme. An estimate of the rate of convergence is obtained using the stratified Monte Carlo method. This domain partitioning allows easy parallel realization and leads to convergence improvement of the Monte Carlo method. The high performance and Grid computing of the corresponding Monte Carlo scheme are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sampling of certain solid angle is a fundamental operation in realistic image synthesis, where the rendering equation describing the light propagation in closed domains is solved. Monte Carlo methods for solving the rendering equation use sampling of the solid angle subtended by unit hemisphere or unit sphere in order to perform the numerical integration of the rendering equation. In this work we consider the problem for generation of uniformly distributed random samples over hemisphere and sphere. Our aim is to construct and study the parallel sampling scheme for hemisphere and sphere. First we apply the symmetry property for partitioning of hemisphere and sphere. The domain of solid angle subtended by a hemisphere is divided into a number of equal sub-domains. Each sub-domain represents solid angle subtended by orthogonal spherical triangle with fixed vertices and computable parameters. Then we introduce two new algorithms for sampling of orthogonal spherical triangles. Both algorithms are based on a transformation of the unit square. Similarly to the Arvo's algorithm for sampling of arbitrary spherical triangle the suggested algorithms accommodate the stratified sampling. We derive the necessary transformations for the algorithms. The first sampling algorithm generates a sample by mapping of the unit square onto orthogonal spherical triangle. The second algorithm directly compute the unit radius vector of a sampling point inside to the orthogonal spherical triangle. The sampling of total hemisphere and sphere is performed in parallel for all sub-domains simultaneously by using the symmetry property of partitioning. The applicability of the corresponding parallel sampling scheme for Monte Carlo and Quasi-D/lonte Carlo solving of rendering equation is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons-comprising an antiproton, an antineutron, and an antilambda hyperon-produced by colliding gold nuclei at high energy. Our analysis yields 70 +/- 17 antihypertritons (3/Lambda(H) over bar) and 157 +/- 30 hypertritons ((3)(Lambda)H). The measured yields of (3)(Lambda)H (3/Lambda(H) over bar) and (3)He ((3)(He) over bar) are similar, suggesting an equilibrium in coordinate and momentum space populations of up, down, and strange quarks and antiquarks, unlike the pattern observed at lower collision energies. The production and properties of antinuclei, and of nuclei containing strange quarks, have implications spanning nuclear and particle physics, astrophysics, and cosmology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The magnetic linear dichroism (MLD) at band-edge photon energies in the Voigt geometry was calculated for EuTe. At the spin-flop transition, MLD shows a step-like increase. Above the spin-flop transition MLD slowly decreases and becomes zero when the averaged electronic charge becomes symmetric relative to the axis of light propagation. Further increase of the magnetic field causes ferromagnetic alignment of the spins along the magnetic field direction, and MLD is recovered but with an opposite sign, and reaches maximum absolute values. These results are explained by the rearrangement of the Eu(2+) spin distribution in the crystal lattice as a function of magnetic field, due to the Zeeman interaction, demonstrating that MLD can be a sensitive probe of the spin order in EuTe, and provides information that is not accessible from other magneto-optical techniques, such as magnetic circular dichroism measurement studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electromagnetically induced transparency (EIT) is an important tool for controlling light propagation and nonlinear wave mixing in atomic gases with potential applications ranging from quantum computing to table top tests of general relativity. Here we consider EIT in an atomic Bose-Einstein condensate (BEC) trapped in a double-well potential. A weak probe laser propagates through one of the wells and interacts with atoms in a three-level Lambda configuration. The well through which the probe propagates is dressed by a strong control laser with Rabi frequency Omega(mu), as in standard EIT systems. Tunneling between the wells at the frequency g provides a coherent coupling between identical electronic states in the two wells, which leads to the formation of interwell dressed states. The macroscopic interwell coherence of the BEC wave function results in the formation of two ultranarrow absorption resonances for the probe field that are inside of the ordinary EIT transparency window. We show that these new resonances can be interpreted in terms of the interwell dressed states and the formation of a type of dark state involving the control laser and the interwell tunneling. To either side of these ultranarrow resonances there is normal dispersion with very large slope controlled by g. We discuss prospects for observing these ultranarrow resonances and the corresponding regions of high dispersion experimentally.