952 resultados para plant protein sources
Resumo:
Allergens are responsible for the Th2 response in patients as part of complex mixtures of proteins, fatty acids and other molecules. Plant allergens have hitherto been included in several protein families that share no common biochemical features. Their physical, biochemical and immunological characteristics have been widely studied, but no definite conclusion has been reached about what makes a protein an allergen. N-glycosylation is characteristic of plant allergen sources but is not present in mammals.
Resumo:
There is no control over the information provided with sequences when they are deposited in the sequence databases. Consequently mistakes can seed the incorrect annotation of other sequences. Grouping genes into families and applying controlled annotation overcomes the problems of incorrect annotation associated with individual sequences. Two databases (http://www.mendel.ac.uk) were created to apply controlled annotation to plant genes and plant ESTs: Mendel-GFDb is a database of plant protein (gene) families based on gapped-BLAST analysis of all sequences in the SWISS-PROT family of databases. Sequences are aligned (ClustalW) and identical and similar residues shaded. The families are visually curated to ensure that one or more criteria, for example overall relatedness and/or domain similarity relate all sequences within a family. Sequence families are assigned a ‘Gene Family Number’ and a unified description is developed which best describes the family and its members. If authority exists the gene family is assigned a ‘Gene Family Name’. This information is placed in Mendel-GFDb. Mendel-ESTS is primarily a database of plant ESTs, which have been compared to Mendel-GFDb, completely sequenced genomes and domain databases. This approach associated ESTs with individual sequences and the controlled annotation of gene families and protein domains; the information being placed in Mendel-ESTS. The controlled annotation applied to genes and ESTs provides a basis from which a plant transcription database can be developed.
Resumo:
The PlantsP database is a curated database that combines information derived from sequences with experimental functional genomics information. PlantsP focuses on plant protein kinases and protein phosphatases. The database will specifically provide a resource for information on a collection of T-DNA insertion mutants (knockouts) in each protein kinase and phosphatase in Arabidopsis thaliana. PlantsP also provides a curated view of each protein that includes a comprehensive annotation of functionally related sequence motifs, sequence family definitions, alignments and phylogenetic trees, and descriptive information drawn directly from the literature. PlantsP is available at http://PlantsP.sdsc.edu.
Resumo:
Aquaculture growth has intensified the need for a diversification of nutritionally appropriate aquafeed ingredients. The purpose of this study was to evaluate Spirulina, a blue-green microalgae, and soybean meal as the sole protein sources in grow-out Tilapia diets. We constructed 3 experimental diets with soybean meal and 0,15, 30, and 45% Spirulina (SBM, SP15, SP30, and SP45 respectively) as their main protein sources. We compared these diets to a commercial Tilapia diet (CC). Additionally, to evaluate the benefit of fishmeal inclusion, fishmeal was added (2 and 10%) to the most successful Spirulina containing diet (FM2, FM10). We evaluated these experimental diets based on their physical properties, palatability, growth potential, waste production, and overall cost. No significant differences in growth performance were found between any of the diets. Total ammonia nitrogen (TAN) and total phosphorus (TP) levels in each tank were significantly affected by diet (p<0.05). CC had significantly higher TP than the experimental diets and SP15 had significantly higher TAN than the other diets. Only CC was found to be significantly more palatable than the experimental diets, and Spirulina inclusion was inversely correlated to pellet stability. Lastly, SP15 was the most profitable experimental diet. We recommend eliminating fishmeal from grow-out Tilapia diets in favour of soybean meal and Spirulina. Spirulina should, however, be limited to 15% to avoid the negative effects it has on stability and profitability, and its possible effect on feed intake.
Resumo:
The sulfonylureas and imidazolinones are potent commercial herbicide families. They are among the most popular choices for farmers worldwide, because they are nontoxic to animals and highly selective. These herbicides inhibit branched-chain amino acid biosynthesis in plants by targeting acetohydroxyacid synthase (AHAS, EC 2.2.1.6). This report describes the 3D structure of Arabidopsis thaliana AHAS in complex with five sulfonylureas (to 2.5 angstrom resolution) and with the imidazolinone, imazaquin (IQ; 2.8 angstrom). Neither class of molecule has a structure that mimics the substrates for the enzyme, but both inhibit by blocking a channel through which access to the active site is gained. The sulfonylureas approach within 5 angstrom of the catalytic center, which is the C2 atom of the cofactor thiamin diphosphate, whereas IQ is at least 7 angstrom from this atom. Ten of the amino acid residues that bind the sulfonylureas also bind IQ. Six additional residues interact only with the sulfonylureas, whereas there are two residues that bind IQ but not the sulfonylureas. Thus, the two classes of inhibitor occupy partially overlapping sites but adopt different modes of binding. The increasing emergence of resistant weeds due to the appearance of mutations that interfere with the inhibition of AHAS is now a worldwide problem. The structures described here provide a rational molecular basis for understanding these mutations, thus allowing more sophisticated AHAS inhibitors to be developed. There is no previously described structure for any plant protein in complex with a commercial herbicide.
Resumo:
Protein quality of carp diets was assessed by five methods: 1. True digestibility, true NPU, BV (as percentage) and PER were determined for approximately iso-energetic diets containing ca.38% protein from 4 different sources. Fish meal gave values of 94.0, 72.5, 77.0, and 1.21 respectively; egg 93.0, 65.4, 70.3, 1.26; Pruteen 68.4, 63.6, 68.40, 1.36; and Casein 91.0, 56.90, 62.5, 1.33. 2. Blood urea were determined and found to be significantly increased with increasing protein concentration in the diet. 3. Ammonia excretion rate was determined; it increased with a decline in protein quality, being greater on groundnut, rapeseed meal, and sunflower diets than on fishmeal, cottonseed meal, and pruteen. 4. Protein sources were incubated in vitro with digestive fluids of fish. Protein digestibilities for fishmeal diets containing 14 and 27% protein were 90.2 and 93.0% respectively; casein (18 and 36%), 91.5 and 93.2%; soybean (10 and 20%), 84.2 and 85.3% ; sunflower (8 and 16%), 64.2 and 66.1%; and fish meal plus soybean meal (ca. 18.2%) 86.5. 5. Plasma free amino acids were individually determined at 0, 6, 24 and 48 h after force-feeding diets containing 15 and 30% protein from six different sources. Total free AA were highest at 24 h for casein and fishmeal, and at 48 h for egg, soybean, rapeseed and sunflower. The 24 h essential amino acid indices (EAAI) for the six diets at 15% protein were, in the same order, 93.0, 100, 100, 86.4, 62.4, and 97.2. At 30% protein, the 24 h EAAI were 78.5, 84.3, 100, and 83.8 for casein, fishmeal, egg, and rapeseed respectively.
Resumo:
Aquaculture growth has intensified the need for a diversification of nutritionally appropriate aquafeed ingredients. The purpose of this study was to evaluate Spirulina, a blue-green microalgae, and soybean meal as the sole protein sources in grow-out Tilapia diets. We constructed 3 experimental diets with soybean meal and 0,15, 30, and 45% Spirulina (SBM, SP15, SP30, and SP45 respectively) as their main protein sources. We compared these diets to a commercial Tilapia diet (CC). Additionally, to evaluate the benefit of fishmeal inclusion, fishmeal was added (2 and 10%) to the most successful Spirulina containing diet (FM2, FM10). We evaluated these experimental diets based on their physical properties, palatability, growth potential, waste production, and overall cost. No significant differences in growth performance were found between any of the diets. Total ammonia nitrogen (TAN) and total phosphorus (TP) levels in each tank were significantly affected by diet (p<0.05). CC had significantly higher TP than the experimental diets and SP15 had significantly higher TAN than the other diets. Only CC was found to be significantly more palatable than the experimental diets, and Spirulina inclusion was inversely correlated to pellet stability. Lastly, SP15 was the most profitable experimental diet. We recommend eliminating fishmeal from grow-out Tilapia diets in favour of soybean meal and Spirulina. Spirulina should, however, be limited to 15% to avoid the negative effects it has on stability and profitability, and its possible effect on feed intake.
Resumo:
A series of 3 experiments were conducted to evaluate the use of microalgae as supplements for ruminants consuming low-CP tropical grasses. In Exp. 1, the chemical composition and in vitro protein degradability of 9 algae species and 4 protein supplements were determined. In Exp. 2, rumen function and microbial protein (MCP) production were determined in Bos indicus steers fed speargrass hay alone or supplemented with Spirulina platensis, Chlorella pyrenoidosa, Dunaliella salina, or cottonseed meal (CSM). In Exp. 3, DMI and ADG were determined in B. indicus steers fed speargrass hay alone or supplemented with increasing amounts of NPN (urea combined with ammonia sulfate), CSM, or S. platensis. In Exp. 1, the CP content of S. platensis and C. pyrenoidosa (675 and 580 g/kg DM) was highest among the algae species and higher than the other protein supplements evaluated, and Schizochytrium sp. had the highest crude lipid (CL) content (198 g/kg DM). In Exp. 2, S. platensis supplementation increased speargrass hay intake, the efficiency of MCP production, the fractional outflow rate of digesta from the rumen, the concentration of NH3N, and the molar proportion of branched-chain fatty acids in the rumen fluid of steers above all other treatments. Dunaliella salina acceptance by steers was low and this resulted in no significant difference to unsupplemented steers for all parameters measured for this algae supplement. In Exp. 3, ADG linearly increased with increasing supplementary N intake from both S. platensis and NPN, with no difference between the 2 supplements. In contrast, ADG quadratically increased with increasing supplementary N intake from CSM. It was concluded that S. platensis and C. pyrenoidosa may potentially be used as protein sources for cattle grazing low-CP pastures.
Resumo:
Building and maintaining muscle is critical to the quality of life for adults and elderly. Physical activity and nutrition are important factors for long-term muscle health. In particular, dietary protein – including protein distribution and quality – are under-appreciated determinants of muscle health for adults. The most unequivocal evidence for the benefit of optimal dietary protein at individual meals is derived from studies of weight management. During the catabolic condition of weight loss, higher protein diets attenuate loss of lean tissue and partition weight loss to body fat when compared with commonly recommended high carbohydrate, low protein diets. Muscle protein turnover is a continuous process in which proteins are degraded, and replaced by newly synthesized proteins. Muscle growth occurs when protein synthesis exceeds protein degradation. Regulation of protein synthesis is complex, with multiple signals influencing this process. The mammalian target of rapamycin (mTORC1) pathway has been identified as a particularly important regulator of protein synthesis, via stimulation of translation initiation. Key regulatory points of translation initiation effected by mTORC1 include assembly of the eukaryotic initiation factor 4F (eIF4F) complex and phosphorylation of the 70 kilodalton ribosomal protein S6 kinase (S6K1). Assembly of the eIF4F initiation complex involves phosphorylation of the inhibitory eIF4E binding protein-1 (4E-BP1), which releases the initiation factor eIF4E and allows it to bind with eIF4G. Binding of eIF4E with eIF4G promotes preparation of the mRNA for binding to the 43S pre-initiation complex. Consumption of the amino acid leucine (Leu) is a key factor determining the anabolic response of muscle protein synthesis (MPS) and mTORC1 signaling to a meal. Research from this dissertation demonstrates that the peak activation of MPS following a complete meal is proportional to the Leu content of a meal and its ability to elevate plasma Leu. Leu has also been implicated as an inhibitor of muscle protein degradation (MPD). In particular, there is evidence suggesting that in muscle wasting conditions Leu supplementation attenuates expression of the ubiquitin-proteosome pathway, which is the primary mode of intracellular protein degradation. However, this is untested in healthy, physiological feeding models. Therefore, an experiment was performed to see if feeding isonitrogenous protein sources with different Leu contents to healthy adult rats would differentially impact ubiquitin-proteosome (protein degradation) outcomes; and if these outcomes are related to the meal responses of plasma Leu. Results showed that higher Leu diets were able to attenuate total proteasome content but had no effect on ubiquitin proteins. This research shows that dietary Leu determines postprandial muscle anabolism. In a parallel line of research, the effects of dietary Leu on changes in muscle mass overtime were investigated. Animals consuming higher Leu diets had larger gastrocnemius muscle weights; furthermore, gastrocnemius muscle weights were correlated with postprandial changes in MPS (r=0.471, P<0.01) and plasma Leu (r=0.400, P=0.01). These results show that the effect of Leu on ubiquitin-proteosome pathways is minimal for healthy adult rats consuming adequate diets. Thus, long-term changes in muscle mass observed in adult rats are likely due to the differences in MPS, rather than MPD. Factors determining the duration of Leu-stimulated MPS were further investigated. Despite continued elevations in plasma Leu and associated translation initiation factors (e.g., S6K1 and 4E-BP1), MPS returned to basal levels ~3 hours after a meal. However, administration of additional nutrients in the form of carbohydrate, Leu, or both ~2 hours after a meal was able to extend the elevation of MPS, in a time and dose dependent manner. This effect led to a novel discovery that decreases in translation elongation activity was associated with increases in activity of AMP kinase, a key cellular energy sensor. This research shows that the Leu density of dietary protein determines anabolic signaling, thereby affecting cellular energetics and body composition.
Resumo:
Stable isotope analyses were applied to explore the relative dietary nitrogen contributions from fish meal and pea meal (Pisum sativum) to muscle tissue of Pacific white shrimp postlarvae (141 ± 31 mg) fed low protein diets having different proportions of both ingredients as the sole dietary protein sources. A negative control diet was formulated to contain 100% pea meal and six more isoproteic diets to have decreasing levels of pea meal-derived nitrogen: 95%, 85%, 70%, 55%, 40% and 0% of the initial level. Growth rates were negatively correlated to dietary pea protein inclusion due to progressive essential amino acid deficiencies (sulphur amino acids, threonine, lysine, histidine). The nitrogen turnover rate significantly increased in muscle tissue of shrimps fed diets having high levels of pea meal; however, contrary to observations from a previous study using soy protein, the relative contributions of dietary nitrogen from pea meal to shrimp muscle tissue were equal or higher than expected contributions established by the dietary formulations. Results highlight the effectiveness of stable isotope analysis in assessing the nutritional contributions of alternative ingredients for aquaculture feeds and the potential suitability of pea as a source of protein (provided the diets are nutritionally balanced)
Resumo:
The PhD research project was a striking example of the enhancement of milling by-product and alternative protein sources from house cricket (Acheta domesticus), conceived as sustainable and renewable sources, to produce innovative food products. During milling processing of wheat and rye, several by-products with high technological and functional potential, are produced. The use of selected microbial consortia, allowed to obtain a pre-fermented ingredient for use in the bakery. The pre-ferments obtained were characterized by a high technological, functional and nutritional value, also interesting from a nutraceutical point of view. Bakery products obtained by the addition of pre-fermented ingredients were characterized by a greater quantity of aromatic molecules and an increase in SCFA, antioxidant activity, total amino acids and total phenols resulting in positive effect on the functionality. Moreover, the industrial scaling-up of pre-ferment and innovative bakery goods production, developed in this research, underlined the technological applicability of pre-fermented ingredients on a large scale. Moreover, the identification of innovative protein sources, can address the request of new sustainable ingredients able to less impact on the environment and to satisfy the food global demand. To upscale the insect production and ensure food safety of insect-based products, biotechnological formulations based on Acheta domesticus powder were optimized. The use of Yarrowia lipolytica in the biotechnological transformation of cricket powder led to the achievement of a cricket-based food ingredient characterized by a reduced content of chitin and an increase of antimicrobial and health-promoting molecules. The innovative bakery products containing cricket-based hydrolysates from Y. lipolytica possessed specific sensory, qualitative and functional characteristics to the final product. Moreover, the combination of Y. lipolytica hydrolysis and baking showed promising results regarding a reduced allergenicity in cricket-based baked products. Thus, the hydrolysate of cricket powder may represent a versatile and promising ingredient in the production of innovative foods.
Resumo:
Avaliaram-se os efeitos da inclusão de farelo de canola em dietas de juvenis de pacu (Piaractus mesopotamicus) sobre parâmetros de crescimento e composição corporal. Um total de 192 alevinos (9 a 15g) foram estocados em 24 tanques de cimento, de 100l de capacidade, durante 103 dias. O farelo de canola foi utilizado em quatro proporções: zero; 9,5%; 19% e 38% da dieta, com ou sem farinha de peixe (12%/dieta), totalizando oito tratamentos. A presença de farinha de peixe não afetou os parâmetros de crescimento avaliados. A inclusão de 38% de farelo de canola na dieta diminuiu o ganho de peso dos peixes, valores médios de 28,74g a 50,70g, e piorou a conversão alimentar aparente, de 1,66 para 2,85. A taxa de eficiência protéica também foi menor nos peixes alimentados com 38% de farelo de canola. As várias proporções de farelo de canola das dietas alteraram os teores de umidade, proteína bruta e lipídios dos peixes. A presença da farinha de peixe, nas dietas, somente influiu no teor de lipídios dos peixes alimentados com dietas contendo 9,5% de farelo de canola. Conclui-se que até 19% de farelo de canola pode ser adicionado às dietas de juvenis de pacu, sem que seu desenvolvimento seja prejudicado.
Resumo:
Cardiovascular diseases (CVD) are the main causes of death in the Western world. Among the risk factors that are modifiable by diet, for reducing cardiovascular disease risks, the total plasma concentrations of cholesterol, triglycerides, LDL-C, and HDL-C are the most important. Dietary measures can balance these components of the lipid profile thus reducing the risk of cardiovascular diseases. The main food components that affect the lipid profile and can be modified by diet are the saturated and trans fats, unsaturated fats, cholesterol, phytosterols, plant protein, and soluble fiber. A wealth of evidence suggests that saturated and trans fats and cholesterol in the diet raise the total plasma cholesterol and LDL-C. Trans fats also reduce HDL-C, an important lipoprotein for mediating the reverse cholesterol transport. On the other hand, phytosterols, plant proteins, isoflavones, and soluble fiber are protective diet factors against cardiovascular diseases by modulating plasma lipoprotein levels. These food components at certain concentrations are able to reduce the total cholesterol, TG, and LDL-C and raise the plasma levels of HDL-C. Therefore, diet is an important tool for the prevention and control of cardiovascular diseases, and should be taken into account as a whole, i.e., not only the food components that modulate plasma concentrations of lipoproteins, but also the diet content of macro nutrients and micronutrients should be considered.
Resumo:
Poultry can be managed under different feeding systems, depending on the husbandry skills and the feed available. These systems include the following: (1) a complete dry feed offered as a mash ad libitum; (2) the same feed offered as pellets or crumbles ad libitum; (3) a complete feed with added whole grain; (4) a complete wet feed given once or twice a day; (5) a complete feed offered on a restricted basis; (6) choice feeding. Of all these, an interesting alternative to offering complete diets is choice feeding which can be applied on both a small or large commercial scale. Under choice feeding or free-choice feeding birds are usually offered a choice between three types of feedstuffs: (a) an energy source (e.g. maize, rice bran, sorghum or wheat); (b) a protein source (e.g. soyabean meal, meat meal, fish meal or coconut meal) plus vitamins and minerals and (c), in the case of laying hens, calcium in granular form (i.e. oyster-shell grit). This system differs from the modern commercial practice of offering a complete diet comprising energy and protein sources, ground and mixed together. Under the complete diet system, birds are mainly only able to exercise their appetite for energy. When the environmental temperature varies, the birds either over- or under-consume protein and calcium. The basic principle behind practising choice feeding with laying hens is that individual hens are able to select from the various feed ingredients on offer and compose their own diet, according to their actual needs and production capacity. A choice-feeding system is of particular importance to small poultry producers in developing countries, such as Indonesia, because it can substantially reduce the cost of feed. The system is flexible and can be constructed in such a way that the various needs of a flock of different breeds, including village chickens, under different climates can be met. The system also offers a more effective way to use home-produced grain, such as maize, and by-products, such as rice bran, in developing countries. Because oyster-shell grit is readily available in developing countries at lower cost than limestone, the use of cheaper oyster-shell grit can further benefit small-holders in these countries. These benefits apart, simpler equipment suffices when designing and building a feed mixer on the farm, and transport costs are lower. If whole (unground) grain is used, the intake of which is accompanied by increased efficiency of feed utilisation, the costs of grinding, mixing and many of the handling procedures associated with mash and pellet preparation are eliminated. The choice feedstuffs can all be offered in the current feed distribution systems, either by mixing the ingredients first or by using a bulk bin divided into three compartments.
Resumo:
Illegal hunting for bushmeat is regarded as an important cause of biodiversity decline in Africa. We use a stated preferences method to obtain information on determinants of demand for bushmeat in villages around the Serengeti National Park, Tanzania. We estimate the effects of changes in the own price of bushmeat and in the prices of two substitute protein sources – fish and chicken. Promoting the availability of protein substitutes at lower prices would be effective at reducing pressures on wildlife. Supply-side measures that raise the price of bushmeat would also be effective.