962 resultados para planner planning EV EVSE veicoli elettrici route percorso web service


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação de Mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Este artículo muestra cómo con bajo coste y riesgo se puede desarrollar un sistema de planificación de viaje multimodal, basado en un enfoque de código abierto y estándares ‘de facto’. Se ha desarrollado completamente una solución de código abierto para un sistema de información de transporte público puerta a puerta basado en estándares ‘de facto’. El cálculo de rutas se realiza mediante Graphserver, mientras que la cartografía se basa en OpenStreetMap. También se ha demostrado cómo exportar una base de datos real de horarios de transporte público como la del operador ETM (Empresa de Transporte Metropolitano de València) a la especificación de Google Transit, para permitir el cálculo de rutas, tanto desde nuestro prototipo como desde Google Transit

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A software prototype for dynamic route planning in the travel industry for cognitive cities is presented in this paper. In contrast to existing tools, the prototype enhances the travel experience (i.e., sightseeing) by allowing additional flexibility to the user. The theoretical background of the paper strengthens the understanding of the introduced concepts (e.g., cognitive cities, fuzzy logic, graph databases) to comprehend the presented prototype. The prototype applies an instantiation and enhancement of the graph database Neo4j . For didactical reasons and to strengthen the understanding of this prototype a scenario, applied to route planning in the city of Bern (Switzerland) is shown in the paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The goal of this research was to evaluate the needs of the intercity common carrier bus service in Iowa. Within the framework of the overall goal, the objectives were to: (1) Examine the detailed operating cost and revenue data of the intercity carriers in Iowa; (2) Develop a model or models to estimate demand in cities and corridors served by the bus industry; (3) Develop a cost function model for estimating a carrier's operating costs; (4) Establish the criteria to be used in assessing the need for changes in bus service; (5) Outline the procedures for estimating route operating costs and revenues and develop a matrix of community and social factors to be considered in evaluation; and (6) Present a case study to demonstrate the methodology. The results of the research are presented in the following chapters: (1) Introduction; (2) Intercity Bus Research and Development; (3) Operating Characteristics of Intercity Carriers in Iowa; (4) Commuter Carriers; (5) Passenger and Revenue Forecasting Models; (6) Operating Cost Relationships; (7) Social and General Welfare Aspects of Intercity Bus Service; (8) Case Study Analysis; and (9) Additional Service Considerations and Recommendations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews the main development of approaches to modelling urban public transit users’ route choice behaviour from 1960s to the present. The approaches reviewed include the early heuristic studies on finding the least cost transit route and all-or-nothing transit assignment, the bus common line problem and corresponding network representation methods, the disaggregate discrete choice models which are based on random utility maximization assumptions, the deterministic use equilibrium and stochastic user equilibrium transit assignment models, and the recent dynamic transit assignment models using either frequency or schedule based network formulation. In addition to reviewing past outcomes, this paper also gives an outlook into the possible future directions of modelling transit users’ route choice behaviour. Based on the comparison with the development of models for motorists’ route choice and traffic assignment problems in an urban road area, this paper points out that it is rewarding for transit route choice research to draw inspiration from the intellectual outcomes out of the road area. Particularly, in light of the recent advancement of modelling motorists’ complex road route choice behaviour, this paper advocates that the modelling practice of transit users’ route choice should further explore the complexities of the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile robots are widely used in many industrial fields. Research on path planning for mobile robots is one of the most important aspects in mobile robots research. Path planning for a mobile robot is to find a collision-free route, through the robot’s environment with obstacles, from a specified start location to a desired goal destination while satisfying certain optimization criteria. Most of the existing path planning methods, such as the visibility graph, the cell decomposition, and the potential field are designed with the focus on static environments, in which there are only stationary obstacles. However, in practical systems such as Marine Science Research, Robots in Mining Industry, and RoboCup games, robots usually face dynamic environments, in which both moving and stationary obstacles exist. Because of the complexity of the dynamic environments, research on path planning in the environments with dynamic obstacles is limited. Limited numbers of papers have been published in this area in comparison with hundreds of reports on path planning in stationary environments in the open literature. Recently, a genetic algorithm based approach has been introduced to plan the optimal path for a mobile robot in a dynamic environment with moving obstacles. However, with the increase of the number of the obstacles in the environment, and the changes of the moving speed and direction of the robot and obstacles, the size of the problem to be solved increases sharply. Consequently, the performance of the genetic algorithm based approach deteriorates significantly. This motivates the research of this work. This research develops and implements a simulated annealing algorithm based approach to find the optimal path for a mobile robot in a dynamic environment with moving obstacles. The simulated annealing algorithm is an optimization algorithm similar to the genetic algorithm in principle. However, our investigation and simulations have indicated that the simulated annealing algorithm based approach is simpler and easier to implement. Its performance is also shown to be superior to that of the genetic algorithm based approach in both online and offline processing times as well as in obtaining the optimal solution for path planning of the robot in the dynamic environment. The first step of many path planning methods is to search an initial feasible path for the robot. A commonly used method for searching the initial path is to randomly pick up some vertices of the obstacles in the search space. This is time consuming in both static and dynamic path planning, and has an important impact on the efficiency of the dynamic path planning. This research proposes a heuristic method to search the feasible initial path efficiently. Then, the heuristic method is incorporated into the proposed simulated annealing algorithm based approach for dynamic robot path planning. Simulation experiments have shown that with the incorporation of the heuristic method, the developed simulated annealing algorithm based approach requires much shorter processing time to get the optimal solutions in the dynamic path planning problem. Furthermore, the quality of the solution, as characterized by the length of the planned path, is also improved with the incorporated heuristic method in the simulated annealing based approach for both online and offline path planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unmanned Aerial Vehicles (UAVs) are emerging as an ideal platform for a wide range of civil applications such as disaster monitoring, atmospheric observation and outback delivery. However, the operation of UAVs is currently restricted to specially segregated regions of airspace outside of the National Airspace System (NAS). Mission Flight Planning (MFP) is an integral part of UAV operation that addresses some of the requirements (such as safety and the rules of the air) of integrating UAVs in the NAS. Automated MFP is a key enabler for a number of UAV operating scenarios as it aids in increasing the level of onboard autonomy. For example, onboard MFP is required to ensure continued conformance with the NAS integration requirements when there is an outage in the communications link. MFP is a motion planning task concerned with finding a path between a designated start waypoint and goal waypoint. This path is described with a sequence of 4 Dimensional (4D) waypoints (three spatial and one time dimension) or equivalently with a sequence of trajectory segments (or tracks). It is necessary to consider the time dimension as the UAV operates in a dynamic environment. Existing methods for generic motion planning, UAV motion planning and general vehicle motion planning cannot adequately address the requirements of MFP. The flight plan needs to optimise for multiple decision objectives including mission safety objectives, the rules of the air and mission efficiency objectives. Online (in-flight) replanning capability is needed as the UAV operates in a large, dynamic and uncertain outdoor environment. This thesis derives a multi-objective 4D search algorithm entitled Multi- Step A* (MSA*) based on the seminal A* search algorithm. MSA* is proven to find the optimal (least cost) path given a variable successor operator (which enables arbitrary track angle and track velocity resolution). Furthermore, it is shown to be of comparable complexity to multi-objective, vector neighbourhood based A* (Vector A*, an extension of A*). A variable successor operator enables the imposition of a multi-resolution lattice structure on the search space (which results in fewer search nodes). Unlike cell decomposition based methods, soundness is guaranteed with multi-resolution MSA*. MSA* is demonstrated through Monte Carlo simulations to be computationally efficient. It is shown that multi-resolution, lattice based MSA* finds paths of equivalent cost (less than 0.5% difference) to Vector A* (the benchmark) in a third of the computation time (on average). This is the first contribution of the research. The second contribution is the discovery of the additive consistency property for planning with multiple decision objectives. Additive consistency ensures that the planner is not biased (which results in a suboptimal path) by ensuring that the cost of traversing a track using one step equals that of traversing the same track using multiple steps. MSA* mitigates uncertainty through online replanning, Multi-Criteria Decision Making (MCDM) and tolerance. Each trajectory segment is modeled with a cell sequence that completely encloses the trajectory segment. The tolerance, measured as the minimum distance between the track and cell boundaries, is the third major contribution. Even though MSA* is demonstrated for UAV MFP, it is extensible to other 4D vehicle motion planning applications. Finally, the research proposes a self-scheduling replanning architecture for MFP. This architecture replicates the decision strategies of human experts to meet the time constraints of online replanning. Based on a feedback loop, the proposed architecture switches between fast, near-optimal planning and optimal planning to minimise the need for hold manoeuvres. The derived MFP framework is original and shown, through extensive verification and validation, to satisfy the requirements of UAV MFP. As MFP is an enabling factor for operation of UAVs in the NAS, the presented work is both original and significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statisticians along with other scientists have made significant computational advances that enable the estimation of formerly complex statistical models. The Bayesian inference framework combined with Markov chain Monte Carlo estimation methods such as the Gibbs sampler enable the estimation of discrete choice models such as the multinomial logit (MNL) model. MNL models are frequently applied in transportation research to model choice outcomes such as mode, destination, or route choices or to model categorical outcomes such as crash outcomes. Recent developments allow for the modification of the potentially limiting assumptions of MNL such as the independence from irrelevant alternatives (IIA) property. However, relatively little transportation-related research has focused on Bayesian MNL models, the tractability of which is of great value to researchers and practitioners alike. This paper addresses MNL model specification issues in the Bayesian framework, such as the value of including prior information on parameters, allowing for nonlinear covariate effects, and extensions to random parameter models, so changing the usual limiting IIA assumption. This paper also provides an example that demonstrates, using route-choice data, the considerable potential of the Bayesian MNL approach with many transportation applications. This paper then concludes with a discussion of the pros and cons of this Bayesian approach and identifies when its application is worthwhile

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A forced landing is an unscheduled event in flight requiring an emergency landing, and is most commonly attributed to engine failure, failure of avionics or adverse weather. Since the ability to conduct a successful forced landing is the primary indicator for safety in the aviation industry, automating this capability for unmanned aerial vehicles (UAVs) will help facilitate their integration into, and subsequent routine operations over civilian airspace. Currently, there is no commercial system available to perform this task; however, a team at the Australian Research Centre for Aerospace Automation (ARCAA) is working towards developing such an automated forced landing system. This system, codenamed Flight Guardian, will operate onboard the aircraft and use machine vision for site identification, artificial intelligence for data assessment and evaluation, and path planning, guidance and control techniques to actualize the landing. This thesis focuses on research specific to the third category, and presents the design, testing and evaluation of a Trajectory Generation and Guidance System (TGGS) that navigates the aircraft to land at a chosen site, following an engine failure. Firstly, two algorithms are developed that adapts manned aircraft forced landing techniques to suit the UAV planning problem. Algorithm 1 allows the UAV to select a route (from a library) based on a fixed glide range and the ambient wind conditions, while Algorithm 2 uses a series of adjustable waypoints to cater for changing winds. A comparison of both algorithms in over 200 simulated forced landings found that using Algorithm 2, twice as many landings were within the designated area, with an average lateral miss distance of 200 m at the aimpoint. These results present a baseline for further refinements to the planning algorithms. A significant contribution is seen in the design of the 3-D Dubins Curves planning algorithm, which extends the elementary concepts underlying 2-D Dubins paths to account for powerless flight in three dimensions. This has also resulted in the development of new methods in testing for path traversability, in losing excess altitude, and in the actual path formation to ensure aircraft stability. Simulations using this algorithm have demonstrated lateral and vertical miss distances of under 20 m at the approach point, in wind speeds of up to 9 m/s. This is greater than a tenfold improvement on Algorithm 2 and emulates the performance of manned, powered aircraft. The lateral guidance algorithm originally developed by Park, Deyst, and How (2007) is enhanced to include wind information in the guidance logic. A simple assumption is also made that reduces the complexity of the algorithm in following a circular path, yet without sacrificing performance. Finally, a specific method of supplying the correct turning direction is also used. Simulations have shown that this new algorithm, named the Enhanced Nonlinear Guidance (ENG) algorithm, performs much better in changing winds, with cross-track errors at the approach point within 2 m, compared to over 10 m using Park's algorithm. A fourth contribution is made in designing the Flight Path Following Guidance (FPFG) algorithm, which uses path angle calculations and the MacCready theory to determine the optimal speed to fly in winds. This algorithm also uses proportional integral- derivative (PID) gain schedules to finely tune the tracking accuracies, and has demonstrated in simulation vertical miss distances of under 2 m in changing winds. A fifth contribution is made in designing the Modified Proportional Navigation (MPN) algorithm, which uses principles from proportional navigation and the ENG algorithm, as well as methods specifically its own, to calculate the required pitch to fly. This algorithm is robust to wind changes, and is easily adaptable to any aircraft type. Tracking accuracies obtained with this algorithm are also comparable to those obtained using the FPFG algorithm. For all three preceding guidance algorithms, a novel method utilising the geometric and time relationship between aircraft and path is also employed to ensure that the aircraft is still able to track the desired path to completion in strong winds, while remaining stabilised. Finally, a derived contribution is made in modifying the 3-D Dubins Curves algorithm to suit helicopter flight dynamics. This modification allows a helicopter to autonomously track both stationary and moving targets in flight, and is highly advantageous for applications such as traffic surveillance, police pursuit, security or payload delivery. Each of these achievements serves to enhance the on-board autonomy and safety of a UAV, which in turn will help facilitate the integration of UAVs into civilian airspace for a wider appreciation of the good that they can provide. The automated UAV forced landing planning and guidance strategies presented in this thesis will allow the progression of this technology from the design and developmental stages, through to a prototype system that can demonstrate its effectiveness to the UAV research and operations community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Community engagement with time poor and seemingly apathetic citizens continues to challenge local governments. Capturing the attention of a digitally literate community who are technology and socially savvy adds a new quality to this challenge. Community engagement is resource and time intensive, yet local governments have to manage on continually tightened budgets. The benefits of assisting citizens in taking ownership in making their community and city a better place to live in collaboration with planners and local governments are well established. This study investigates a new collaborative form of civic participation and engagement for urban planning that employs in-place digital augmentation. It enhances people’s experience of physical spaces with digital technologies that are directly accessible within that space, in particular through interaction with mobile phones and public displays. The study developed and deployed a system called Discussions in Space (DIS) in conjunction with a major urban planning project in Brisbane. Planners used the system to ask local residents planning-related questions via a public screen, and passers-by sent responses via SMS or Twitter onto the screen for others to read and reflect, hence encouraging in-situ, real-time, civic discourse. The low barrier of entry proved to be successful in engaging a wide range of residents who are generally not heard due to their lack of time or interest. The system also reflected positively on the local government for reaching out in this way. Challenges and implications of the short-texted and ephemeral nature of this medium were evaluated in two focus groups with urban planners. The paper concludes with an analysis of the planners’ feedback evaluating the merits of the data generated by the system to better engage with Australia’s new digital locals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is about planning paths from overhead imagery, the novelty of which is taking explicit account of uncertainty in terrain classification and spatial variation in terrain cost. The image is first classified using a multi-class Gaussian Process Classifier which provides probabilities of class membership at each location in the image. The probability of class membership at a particular grid location is then combined with a terrain cost evaluated at that location using a spatial Gaussian process. The resulting cost function is, in turn, passed to a planner. This allows both the uncertainty in terrain classification and spatial variations in terrain costs to be incorporated into the planned path. Because the cost of traversing a grid cell is now a probability density rather than a single scalar value, we can produce not only the most-likely shortest path between points on the map, but also sample from the cost map to produce a distribution of paths between the points. Results are shown in the form of planned paths over aerial maps, these paths are shown to vary in response to local variations in terrain cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a hardware-based path planning architecture for unmanned aerial vehicle (UAV) adaptation is proposed. The architecture aims to provide UAVs with higher autonomy using an application specific evolutionary algorithm (EA) implemented entirely on a field programmable gate array (FPGA) chip. The physical attributes of an FPGA chip, being compact in size and low in power consumption, compliments it to be an ideal platform for UAV applications. The design, which is implemented entirely in hardware, consists of EA modules, population storage resources, and three-dimensional terrain information necessary to the path planning process, subject to constraints accounted for separately via UAV, environment and mission profiles. The architecture has been successfully synthesised for a target Xilinx Virtex-4 FPGA platform with 32% logic slices utilisation. Results obtained from case studies for a small UAV helicopter with environment derived from LIDAR (Light Detection and Ranging) data verify the effectiveness of the proposed FPGA-based path planner, and demonstrate convergence at rates above the typical 10 Hz update frequency of an autopilot system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research interest in pedestrian behaviour spans the retail industry, emergency services, urban planners and other agencies. Most models to simulate and model pedestrian movement can be distinguished on the basis of geographical scale, from the micro-scale movement of obstacle avoidance, through the meso-scale of individuals planning multi-stop shopping trips, up to the macro-scale of overall flow of masses of people between places. In this paper, route-choice decision-making model is devised for modelling passengers flow in airport terminal. A set of devised advanced traits of passengers is firstly proposed. Advanced traits take into account a passenger’s cognitive preferences and demonstrate underlying motivations of route-choice decisions. Although the activities of passengers are normally regarded as stochastic and sometimes unpredictable, real scenarios of passenger flows are basically feasible to be compared with virtual simulations in terms of tactical route-choice decision-making. Passengers in the model are as intelligent agents who possess a bunch of initial basic traits and are categorized into five distinguish groups in terms of routing preferences. Route choices are consecutively determined by inferring current advanced traits according to the utility matrix.