100 resultados para pilocarpine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to assess the activity of aqueous (AE) and ethanolic extracts (EE) and pilocarpine hydrochloride, which were extracted and isolated from Pilocarpus microphyllus (Jaborandi), respectively, on Rhipicephalus (Boophilus) microplus. High performance liquid chromatography (HPLC) was performed to quantify these compounds. Larval packet and adult immersion tests were conducted with different concentrations. Five AE and EE concentrations, ranging from 6.2 to 100.0 mg mL?1, and six concentrations of pilocarpine hydrochloride, ranging from 0.7 to 24.0 mg mL?1, were tested. The lethal concentration (LC50) of each extract for larvae and engorged females was calculated through Probit analysis. The concentration of pilocarpine hydrochloride obtained from the EE and the AE was 1.3 and 0.3% (m/m), respectively. Pilocarpine hydrochloride presented the highest acaricidal activity on larvae (LC50 2.6 mg mL?1) and engorged females (LC50 11.8 mg mL?1) of R.(B.) microplus, followed by the EE which presented LC50 of 56.4 and 15.9 mg mL?1, for larvae and engorged females, respectively. Such results indicate that pilocarpine hydrochloride has acaricidal activity, and may be the primary compound responsible for this activity by P. microphyllus EE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nervous systems can initially be divided up into the central and peripheral nervous systems. The central nervous system is the brain and spinal cord and drugs that modify the central nervous system are considered as a subject in systematic pharmacology (therapeutics) section. Everything neural, other that the central nervous system, can be considered peripheral nervous systems. The peripheral nervous systems can be divided into the autonomic(involuntary) nervous system, which is the system that performs without your conscious help, and the somatic or voluntary nervous system, which you can consciously control(Figure 7.1). In addition the autonomic nervous system is divided into the sympathetic and parasympathetic nervous systems...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhythmic motor behaviors in all animals appear to be under the control of "central pattern generator" circuits, neural circuits which can produce output patterns appropriate for behavior even when isolated from their normal peripheral inputs. Insects have been a useful model system in which to study the control of legged terrestrial locomotion. Much is known about walking in insects at the behavioral level, but to date there has been no clear demonstration that a central pattern generator for walking exists. The focus of this thesis is to explore the central neural basis for locomotion in the locust, Schistocerca americana.

Rhythmic motor patterns could be evoked in leg motor neurons of isolated thoracic ganglia of locusts by the muscarinic agonist pilocarpine. These motor patterns would be appropriate for the movement of single legs during walking. Rhythmic patterns could be evoked in all three thoracic ganglia, but the segmental rhythms differed in their sensitivities to pilocarpine, their frequencies, and the phase relationships of motor neuron antagonists. These different patterns could be generated by a simple adaptable model circuit, which was both simulated and implemented in VLSI hardware. The intersegmental coordination of leg motor rhythms was then examined in preparations of isolated chains of thoracic ganglia. Correlations between motor patterns in different thoracic ganglia indicated that central coupling between segmental pattern generators is likely to contribute to the coordination of the legs during walking.

The work described here clearly demonstrates that segmental pattern generators for walking exist in insects. The pattern generators produce motor outputs which are likely to contribute to the coordination of the joints of a limb, as well as the coordination of different limbs. These studies lay the groundwork for further studies to determine the relative contributions of central and sensory neural mechanisms to terrestrial walking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: 5'-deoxy-5'-methylthioadenosine (MTA) is an endogenous compound produced through the metabolism of polyamines. The therapeutic potential of MTA has been assayed mainly in liver diseases and, more recently, in animal models of multiple sclerosis. The aim of this study was to determine the neuroprotective effect of this molecule in vitro and to assess whether MTA can cross the blood brain barrier (BBB) in order to also analyze its potential neuroprotective efficacy in vivo. Methods: Neuroprotection was assessed in vitro using models of excitotoxicity in primary neurons, mixed astrocyte-neuron and primary oligodendrocyte cultures. The capacity of MTA to cross the BBB was measured in an artificial membrane assay and using an in vitro cell model. Finally, in vivo tests were performed in models of hypoxic brain damage, Parkinson's disease and epilepsy. Results: MTA displays a wide array of neuroprotective activities against different insults in vitro. While the data from the two complementary approaches adopted indicate that MTA is likely to cross the BBB, the in vivo data showed that MTA may provide therapeutic benefits in specific circumstances. Whereas MTA reduced the neuronal cell death in pilocarpine-induced status epilepticus and the size of the lesion in global but not focal ischemic brain damage, it was ineffective in preserving dopaminergic neurons of the substantia nigra in the 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-mice model. However, in this model of Parkinson's disease the combined administration of MTA and an A(2A) adenosine receptor antagonist did produce significant neuroprotection in this brain region. Conclusion: MTA may potentially offer therapeutic neuroprotection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

103 p.; 102 p.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies suggest that selective antagonists of specific subtypes of muscarinic acetylcholine receptors (mAChRs) may provide a novel approach for the treatment of certain central nervous system (CNS) disorders, including epileptic disorders, Parkinson's disease, and dystonia. Unfortunately, previously reported antagonists are not highly selective for specific mAChR subtypes, making it difficult to definitively establish the functional roles and therapeutic potential for individual subtypes of this receptor subfamily. The M 1 mAChR is of particular interest as a potential target for treatment of CNS disorders. We now report the discovery of a novel selective antagonist of M-1 mAChRs, termed VU0255035 [N-(3-oxo-3-(4-(pyridine-4-yl)piperazin-1-yl)propyl)benzo[c][1,2,5]thiadiazole-4-sulfonamide]. Equilibrium radioligand binding and functional studies demonstrate a greater than 75-fold selectivity of VU0255035 for M-1 mAChRs relative to M-2-M-5. Molecular pharmacology and mutagenesis studies indicate that VU0255035 is a competitive orthosteric antagonist of M-1 mAChRs, a surprising finding given the high level of M-1 mAChR selectivity relative to other orthosteric antagonists. Whole-cell patch-clamp recordings demonstrate that VU0255035 inhibits potentiation of N-methyl-D-aspartate receptor currents by the muscarinic agonist carbachol in hippocampal pyramidal cells. VU0255035 has excellent brain penetration in vivo and is efficacious in reducing pilocarpine-induced seizures in mice. We were surprised to find that doses of VU0255035 that reduce pilo-carpine-induced seizures do not induce deficits in contextual freezing, a measure of hippocampus-dependent learning that is disrupted by nonselective mAChR antagonists. Taken together, these data suggest that selective antagonists of M-1 mAChRs do not induce the severe cognitive deficits seen with nonselective mAChR antagonists and could provide a novel approach for the treatment certain of CNS disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Open angle glaucoma (OAG) is a common cause of blindness.

OBJECTIVES: To assess the effects of medication compared with initial surgery in adults with OAG.

SEARCH METHODS: We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2012, Issue 7), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to August 2012), EMBASE (January 1980 to August 2012), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to August 2012), Biosciences Information Service (BIOSIS) (January 1969 to August 2012), Cumulative Index to Nursing and Allied Health Literature (CINAHL) (January 1937 to August 2012), OpenGrey (System for Information on Grey Literature in Europe) (www.opengrey.eu/), Zetoc, the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 1 August 2012. The National Research Register (NRR) was last searched in 2007 after which the database was archived. We also checked the reference lists of articles and contacted researchers in the field.

SELECTION CRITERIA: We included randomised controlled trials (RCTs) comparing medications with surgery in adults with OAG.

DATA COLLECTION AND ANALYSIS: Two authors independently assessed trial quality and extracted data. We contacted study authors for missing information.

MAIN RESULTS: Four trials involving 888 participants with previously untreated OAG were included. Surgery was Scheie's procedure in one trial and trabeculectomy in three trials. In three trials, primary medication was usually pilocarpine, in one trial it was a beta-blocker.The most recent trial included participants with on average mild OAG. At five years, the risk of progressive visual field loss, based on a three unit change of a composite visual field score, was not significantly different according to initial medication or initial trabeculectomy (odds ratio (OR) 0.74, 95% confidence interval (CI) 0.54 to 1.01). In an analysis based on mean difference (MD) as a single index of visual field loss, the between treatment group difference in MD was -0.20 decibel (dB) (95% CI -1.31 to 0.91). For a subgroup with more severe glaucoma (MD -10 dB), findings from an exploratory analysis suggest that initial trabeculectomy was associated with marginally less visual field loss at five years than initial medication, (mean difference 0.74 dB (95% CI -0.00 to 1.48). Initial trabeculectomy was associated with lower average intraocular pressure (IOP) (mean difference 2.20 mmHg (95% CI 1.63 to 2.77) but more eye symptoms than medication (P = 0.0053). Beyond five years, visual acuity did not differ according to initial treatment (OR 1.48, 95% CI 0.58 to 3.81).From three trials in more severe OAG, there is some evidence that medication was associated with more progressive visual field loss and 3 to 8 mmHg less IOP lowering than surgery. In the longer-term (two trials) the risk of failure of the randomised treatment was greater with medication than trabeculectomy (OR 3.90, 95% CI 1.60 to 9.53; hazard ratio (HR) 7.27, 95% CI 2.23 to 25.71). Medications and surgery have evolved since these trials were undertaken.In three trials the risk of developing cataract was higher with trabeculectomy (OR 2.69, 95% CI 1.64 to 4.42). Evidence from one trial suggests that, beyond five years, the risk of needing cataract surgery did not differ according to initial treatment policy (OR 0.63, 95% CI 0.15 to 2.62).Methodological weaknesses were identified in all the trials.

AUTHORS' CONCLUSIONS: Primary surgery lowers IOP more than primary medication but is associated with more eye discomfort. One trial suggests that visual field restriction at five years is not significantly different whether initial treatment is medication or trabeculectomy. There is some evidence from two small trials in more severe OAG, that initial medication (pilocarpine, now rarely used as first line medication) is associated with more glaucoma progression than surgery. Beyond five years, there is no evidence of a difference in the need for cataract surgery according to initial treatment.The clinical and cost-effectiveness of contemporary medication (prostaglandin analogues, alpha2-agonists and topical carbonic anhydrase inhibitors) compared with primary surgery is not known.Further RCTs of current medical treatments compared with surgery are required, particularly for people with severe glaucoma and in black ethnic groups. Outcomes should include those reported by patients. Economic evaluations are required to inform treatment policy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Open angle glaucoma (OAG) is the commonest cause of irreversible blindness worldwide. OBJECTIVES: To study the relative effects of medical and surgical treatment of OAG. SEARCH STRATEGY: We searched the Cochrane Central Register of Controlled Trials (The Cochrane Library Issue 1, 2005), MEDLINE (1966 to February 2005), EMBASE (1988 to February 2005), and reference lists of articles. We also contacted researchers in the field. SELECTION CRITERIA: Randomised controlled trials comparing medications to surgery in adults. DATA COLLECTION AND ANALYSIS: Two authors independently assessed trial quality and extracted data. We contacted trial investigators for missing information. MAIN RESULTS: Four trials involving 888 participants with previously untreated OAG were included. Surgery was Scheie's procedure in one trial and trabeculectomy in three trials. In three trials, primary medication was usually pilocarpine, in one trial a beta-blocker.In the most recent trial, participants with mild OAG, progressive visual field (VF) loss, after adjustment for cataract surgery, was not significantly different for medications compared to trabeculectomy (Odds ratio (OR) 0.74; 95% CI 0.54 to 1.01). Reduction of vision, with a higher risk of developing cataract (OR 2.69, 95%% CI 1.64 to 4.42), and more patient discomfort was more likely with trabeculectomy than medication.There is some evidence, from three trials, for people with moderately advanced glaucoma that medication is associated with more progressive VF loss and 6 to 8 mmHg less intraocular pressure (IOP) lowering than surgery, either by a Scheie's procedure or trabeculectomy. There was a trend towards an increased risk of failed IOP control over time for initial pilocarpine treatment compared to trabeculectomy. In the longer-term (two trials) the risk of failure was significantly greater with medication than trabeculectomy (OR 3.90, 95% CI 1.60 to 9.53; HR 7.27, 95% CI 2.23 to 25.71). Medicine and surgery have evolved since these trials were undertaken, and additionally the evidence is potentially subject to detection and attrition bias. AUTHORS' CONCLUSIONS: Evidence from one trial suggests, for mild OAG, that VF deterioration up to five-years is not significantly different whether treatment is initiated with medication or trabeculectomy. Reduced vision, cataract and eye discomfort are more likely with trabeculectomy. There is some evidence, for more severe OAG, that initial medication (pilocarpine, now rarely used as first line medication) is associated with greater VF deterioration than surgery. In general, surgery lowers IOP more than medication.There was no evidence to determine the effectiveness of contemporary medication (prostaglandin analogues, alpha2-agonists and topical carbonic anhydrase inhibitors) compared to surgery in severe OAG, and in people of black African ethnic origin who have a greater risk of more severe open angle glaucoma. More research is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cannabis sativa has been associated with contradictory effects upon seizure states despite its medicinal use by numerous people with epilepsy. We have recently shown that the phytocannabinoid cannabidiol (CBD) reduces seizure severity and lethality in the well-established in vivo model of pentylenetetrazoleinduced generalised seizures, suggesting that earlier, small-scale clinical trials examining CBD effects in people with epilepsy warrant renewed attention. Here, we report the effects of pure CBD (1, 10 and 100 mg/kg) in two other established rodent seizure models, the acute pilocarpine model of temporal lobe seizure and the penicillin model of partial seizure. Seizure activity was video recorded and scored offline using model-specific seizure severity scales. In the pilocarpine model CBD (all doses) significantly reduced the percentage of animals experiencing the most severe seizures. In the penicillin model, CBD (�10 mg/kg) significantly decreased the percentage mortality as a result of seizures; CBD (all doses) also decreased the percentage of animals experiencing the most severe tonic–clonic seizures. These results extend the anticonvulsant profile of CBD; when combined with a reported absence of psychoactive effects, this evidence strongly supports CBD as a therapeutic candidate for a diverse range of human epilepsies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary Background and purpose: Phytocannabinoids in Cannabis sativa have diverse pharmacological targets extending beyond cannabinoid receptors and several exert notable anticonvulsant effects. For the first time, we investigated the anticonvulsant profile of the phytocannabinoid cannabidivarin (CBDV) in vitro and in in vivo seizure models. Experimental approach: The effect of CBDV (1-100μM) on epileptiform local field potentials (LFPs) induced in rat hippocampal brain slices by 4-AP application or Mg2+-free conditions was assessed by in vitro multi-electrode array recordings. Additionally, the anticonvulsant profile of CBDV (50-200 mg kg-1) in vivo was investigated in four rodent seizure models: maximal electroshock (mES) and audiogenic seizures in mice, and pentylenetetrazole (PTZ) and pilocarpine-induced seizures in rat. CBDV effects in combination with commonly-used antiepileptic drugs were investigated in rat seizures. Finally, the motor side effect profile of CBDV was investigated using static beam and gripstrength assays. Key results: CDBV significantly attenuated status epilepticus-like epileptiform LFPs induced by 4-AP and Mg2+-free conditions. CBDV had significant anticonvulsant effects in mES (≥100 mg kg-1), audiogenic (≥50 mg kg-1) and PTZ-induced seizures (≥100 mg kg-1). CBDV alone had no effect against pilocarpine-induced seizures, but significantly attenuated these seizures when administered with valproate or phenobarbital at 200 mg kg-1 CBDV. CBDV had no effect on motor function. Conclusions and Implications: These results indicate that CBDV is an effective anticonvulsant across a broad range of seizure models, does not significantly affect normal motor function and therefore merits further investigation in chronic epilepsy models to justify human trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Epilepsy is the most prevalent neurological disease and is characterized by recurrent seizures. Here, we investigate (i) the anticonvulsant profiles of cannabis-derived botanical drug substances (BDSs) rich in cannabidivarin (CBDV) and containing cannabidiol (CBD) in acute in vivo seizure models and (ii) the binding of CBDV BDSs and their components at cannabinoid CB 1 receptors. EXPERIMENTAL APPROACH The anticonvulsant profiles of two CBDV BDSs (50–422 mg·kg −1 ) were evaluated in three animal models of acute seizure. Purified CBDV and CBD were also evaluated in an isobolographic study to evaluate potential pharmacological interactions. CBDV BDS effects on motor function were also investigated using static beam and grip strength assays. Binding of CBDV BDSs to cannabinoid CB 1 receptors was evaluated using displacement binding assays. KEY RESULTS CBDV BDSs exerted significant anticonvulsant effects in the pentylenetetrazole (≥100 mg·kg −1 ) and audiogenic seizure models (≥87 mg·kg −1 ), and suppressed pilocarpine-induced convulsions (≥100 mg·kg −1 ). The isobolographic study revealed that the anticonvulsant effects of purified CBDV and CBD were linearly additive when co-administered. Some motor effects of CBDV BDSs were observed on static beam performance; no effects on grip strength were found. The Δ 9 -tetrahydrocannabinol and Δ 9 -tetrahydrocannabivarin content of CBDV BDS accounted for its greater affinity for CB 1 cannabinoid receptors than purified CBDV. CONCLUSIONS AND IMPLICATIONS CBDV BDSs exerted significant anticonvulsant effects in three models of seizure that were not mediated by the CB 1 cannabinoid receptor and were of comparable efficacy with purified CBDV. These findings strongly support the further clinical development of CBDV BDSs for the treatment of epilepsy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Animal models of acquired epilepsies aim to provide researchers with tools for use in understanding the processes underlying the acquisition, development and establishment of the disorder. Typically, following a systemic or local insult, vulnerable brain regions undergo a process leading to the development, over time, of spontaneous recurrent seizures. Many such models make use of a period of intense seizure activity or status epilepticus, and this may be associated with high mortality and/or global damage to large areas of the brain. These undesirable elements have driven improvements in the design of chronic epilepsy models, for example the lithium-pilocarpine epileptogenesis model. Here, we present an optimised model of chronic epilepsy that reduces mortality to 1% whilst retaining features of high epileptogenicity and development of spontaneous seizures. Using local field potential recordings from hippocampus in vitro as a probe, we show that the model does not result in significant loss of neuronal network function in area CA3 and, instead, subtle alterations in network dynamics appear during a process of epileptogenesis, which eventually leads to a chronic seizure state. The model’s features of very low mortality and high morbidity in the absence of global neuronal damage offer the chance to explore the processes underlying epileptogenesis in detail, in a population of animals not defined by their resistance to seizures, whilst acknowledging and being driven by the 3Rs (Replacement, Refinement and Reduction of animal use in scientific procedures) principles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Social behavior depends on the integrity of social brain circuitry. The temporal lobe is an important part of the social brain, and manifests morphological and functional alterations in autism spectrum disorders (ASD). Rats with temporal lobe epilepsy (TLE), induced with pilocarpine, were subjected to a social discrimination test that has been used to investigate potential animal models of ASD, and the results were compared with those for the control group. Rats with TLE exhibited fewer social behaviors than controls. No differences were observed in nonsocial behavior between groups. The results suggest an important role for the temporal lobe in regulating social behaviors. This animal model might be used to explore some questions about ASD pathophysiology. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to identify molecular pathways involved in audiogenic seizures in the epilepsy-prone Wistar Audiogenic Rat (WAR). For this, we used a suppression-subtractive hybridization (SSH) library from the hippocampus of WARs coupled to microarray comparative gene expression analysis, followed by Northern blot validation of individual genes. We discovered that the levels of the non-protein coding (npc) RNA BC1 were significantly reduced in the hippocampus of WARs submitted to repeated audiogenic seizures (audiogenic kindling) when compared to Wistar resistant rats and to both naive WARs and Wistars. By quantitative in situ hybridization, we verified lower levels of BC1 RNA in the GD-hilus and significant signal ratio reduction in the stratum radiatum and stratum pyramidale of hippocampal CA3 subfield of audiogenic kindled animals. Functional results recently obtained in a BC1-/- mouse model and our current data are supportive of a potential disruption in signaling pathways, upstream of BC1, associated with the seizure susceptibility of WARs. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oral health complications in diabetes include decreased salivary secretion. The SLC5A1 gene encodes the Na(+)-glucose cotransporter SGLT1 protein, which not only transports glucose, but also acts as a water channel. Since SLC5A1 expression is altered in kidneys of diabetic subjects, we hypothesize that it could also be altered in salivary glands, contributing to diabetic dysfunction. The present study shows a diabetes-induced decrease (p < 0.001) in salivary secretion, which was accompanied by enhanced (p < 0.05) SGLT1 mRNA expression in parotid (50%) and submandibular (30%) glands. Immunohistochemical analysis of parotid gland of diabetic rats revealed that SGLT1 protein expression increased in the luminal membrane of ductal cells, which can stimulate water reabsorption from primary saliva. Furthermore, SGLT1 protein was reduced in myoepithelial cells of the parotid from diabetic animals, and that, by reducing cellular contractile activity, might also be related to reduced salivary flux. Six-day insulin-treated diabetic rats reversed all alterations. In conclusion, diabetes increases SLC5A1 gene expression in salivary glands, increasing the SGLT1 protein content in the luminal membrane of ductal cells, which, by increasing water reabsorption, might explain the diabetes-induced decrease in salivary secretion.