909 resultados para pictorial depth cues


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The depth of focus (DOF) can be defined as the variation in image distance of a lens or an optical system which can be tolerated without incurring an objectionable lack of sharpness of focus. The DOF of the human eye serves a mechanism of blur tolerance. As long as the target image remains within the depth of focus in the image space, the eye will still perceive the image as being clear. A large DOF is especially important for presbyopic patients with partial or complete loss of accommodation (presbyopia), since this helps them to obtain an acceptable retinal image when viewing a target moving through a range of near to intermediate distances. The aim of this research was to investigate the DOF of the human eye and its association with the natural wavefront aberrations, and how higher order aberrations (HOAs) can be used to expand the DOF, in particular by inducing spherical aberrations ( 0 4 Z and 0 6 Z ). The depth of focus of the human eye can be measured using a variety of subjective and objective methods. Subjective measurements based on a Badal optical system have been widely adopted, through which the retinal image size can be kept constant. In such measurements, the subject.s tested eye is normally cyclopleged. Objective methods without the need of cycloplegia are also used, where the eye.s accommodative response is continuously monitored. Generally, the DOF measured by subjective methods are slightly larger than those measured objectively. In recent years, methods have also been developed to estimate DOF from retinal image quality metrics (IQMs) derived from the ocular wavefront aberrations. In such methods, the DOF is defined as the range of defocus error that degrades the retinal image quality calculated from the IQMs to a certain level of the possible maximum value. In this study, the effect of different amounts of HOAs on the DOF was theoretically evaluated by modelling and comparing the DOF of subjects from four different clinical groups, including young emmetropes (20 subjects), young myopes (19 subjects), presbyopes (32 subjects) and keratoconics (35 subjects). A novel IQM-based through-focus algorithm was developed to theoretically predict the DOF of subjects with their natural HOAs. Additional primary spherical aberration ( 0 4 Z ) was also induced in the wavefronts of myopes and presbyopes to simulate the effect of myopic refractive correction (e.g. LASIK) and presbyopic correction (e.g. progressive power IOL) on the subject.s DOF. Larger amounts of HOAs were found to lead to greater values of predicted DOF. The introduction of primary spherical aberration was found to provide moderate increase of DOF while slightly deteriorating the image quality at the same time. The predicted DOF was also affected by the IQMs and the threshold level adopted. We then investigated the influence of the chosen threshold level of the IQMs on the predicted DOF, and how it relates to the subjectively measured DOF. The subjective DOF was measured in a group of 17 normal subjects, and we used through-focus visual Strehl ratio based on optical transfer function (VSOTF) derived from their wavefront aberrations as the IQM to estimate the DOF. The results allowed comparison of the subjective DOF with the estimated DOF and determination of a threshold level for DOF estimation. Significant correlation was found between the subject.s estimated threshold level for the estimated DOF and HOA RMS (Pearson.s r=0.88, p<0.001). The linear correlation can be used to estimate the threshold level for each individual subject, subsequently leading to a method for estimating individual.s DOF from a single measurement of their wavefront aberrations. A subsequent study was conducted to investigate the DOF of keratoconic subjects. Significant increases of the level of HOAs, including spherical aberration, coma and trefoil, can be observed in keratoconic eyes. This population of subjects provides an opportunity to study the influence of these HOAs on DOF. It was also expected that the asymmetric aberrations (coma and trefoil) in the keratoconic eye could interact with defocus to cause regional blur of the target. A dual-Badal-channel optical system with a star-pattern target was used to measure the subjective DOF in 10 keratoconic eyes and compared to those from a group of 10 normal subjects. The DOF measured in keratoconic eyes was significantly larger than that in normal eyes. However there was not a strong correlation between the large amount of HOA RMS and DOF in keratoconic eyes. Among all HOA terms, spherical aberration was found to be the only HOA that helped to significantly increase the DOF in the studied keratoconic subjects. Through the first three studies, a comprehensive understanding of DOF and its association to the HOAs in the human eye had been achieved. An adaptive optics system was then designed and constructed. The system was capable of measuring and altering the wavefront aberrations in the subject.s eye and measuring the resulting DOF under the influence of different combination of HOAs. Using the AO system, we investigated the concept of extending the DOF through optimized combinations of 0 4 Z and 0 6 Z . Systematic introduction of a targeted amount of both 0 4 Z and 0 6 Z was found to significantly improve the DOF of healthy subjects. The use of wavefront combinations of 0 4 Z and 0 6 Z with opposite signs can further expand the DOF, rather than using 0 4 Z or 0 6 Z alone. The optimal wavefront combinations to expand the DOF were estimated using the ratio of increase in DOF and loss of retinal image quality defined by VSOTF. In the experiment, the optimal combinations of 0 4 Z and 0 6 Z were found to provide a better balance of DOF expansion and relatively smaller decreases in VA. Therefore, the optimal combinations of 0 4 Z and 0 6 Z provides a more efficient method to expand the DOF rather than 0 4 Z or 0 6 Z alone. This PhD research has shown that there is a positive correlation between the DOF and the eye.s wavefront aberrations. More aberrated eyes generally have a larger DOF. The association of DOF and the natural HOAs in normal subjects can be quantified, which allows the estimation of DOF directly from the ocular wavefront aberration. Among the Zernike HOA terms, spherical aberrations ( 0 4 Z and 0 6 Z ) were found to improve the DOF. Certain combinations of 0 4 Z and 0 6 Z provide a more effective method to expand DOF than using 0 4 Z or 0 6 Z alone, and this could be useful in the optimal design of presbyopic optical corrections such as multifocal contact lenses, intraocular lenses and laser corneal surgeries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Texas Transportation Commission (“the Commission”) is responsible for planning and making policies for the location, construction, and maintenance of a comprehensive system of highways and public roads in Texas. In order for the Commission to carry out its legislative mandate, the Texas Constitution requires that most revenue generated by motor vehicle registration fees and motor fuel taxes be used for constructing and maintaining public roadways and other designated purposes. The Texas Department of Transportation (TxDOT) assists the Commission in executing state transportation policy. It is the responsibility of the legislature to appropriate money for TxDOT’s operation and maintenance expenses. All money authorized to be appropriated for TxDOT’s operations must come from the State Highway Fund (also known as Fund 6, Fund 006, or Fund 0006). The Commission can then use the balance in the fund to fulfill its responsibilities. However, the value of the revenue received in Fund 6 is not keeping pace with growing demand for transportation infrastructure in Texas. Additionally, diversion of revenue to nontransportation uses now exceeds $600 million per year. As shown in Figure 1.1, revenues and expenditures of the State Highway Fund per vehicle mile traveled (VMT) in Texas have remained almost flat since 1993. In the meantime, construction cost inflation has gone up more than 100%, effectively halving the value of expenditure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adult articular cartilage has depth-dependent mechanical and biochemical properties which contribute to zone-specific functions. The compressive moduli of immature cartilage and tissue-engineered cartilage are known to be lower than those of adult cartilage. The objective of this study was to determine if such tissues exhibit depth-dependent compressive properties, and how these depth-varying properties were correlated with cell and matrix composition of the tissue. The compressive moduli of fetal and newborn bovine articular cartilage increased with depth (p < 0.05) by a factor of 4-5 from the top 0.1 mm (28 +/- 13 kPa, 141 +/- 10 kPa, respectively) to 1 mm deep into the tissue. Likewise, the glycosaminoglycan and collagen content increased with depth (both p < 0.001), and correlated with the modulus (both p < 0.01). In contrast, tissue-engineered cartilage formed by either layering or mixing cells from the superficial and middle zone of articular cartilage exhibited similarly soft regions at both construct surfaces, as exemplified by large equilibrium strains. The properties of immature cartilage may provide a template for developing tissue-engineered cartilage which aims to repair cartilage defects by recapitulating the natural development and growth processes. These results suggest that while depth-dependent properties may be important to engineer into cartilage constructs, issues other than cell heterogeneity must be addressed to generate such tissues. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The functional properties of cartilaginous tissues are determined predominantly by the content, distribution, and organization of proteoglycan and collagen in the extracellular matrix. Extracellular matrix accumulates in tissue-engineered cartilage constructs by metabolism and transport of matrix molecules, processes that are modulated by physical and chemical factors. Constructs incubated under free-swelling conditions with freely permeable or highly permeable membranes exhibit symmetric surface regions of soft tissue. The variation in tissue properties with depth from the surfaces suggests the hypothesis that the transport processes mediated by the boundary conditions govern the distribution of proteoglycan in such constructs. A continuum model (DiMicco and Sah in Transport Porus Med 50:57-73, 2003) was extended to test the effects of membrane permeability and perfusion on proteoglycan accumulation in tissue-engineered cartilage. The concentrations of soluble, bound, and degraded proteoglycan were analyzed as functions of time, space, and non-dimensional parameters for several experimental configurations. The results of the model suggest that the boundary condition at the membrane surface and the rate of perfusion, described by non-dimensional parameters, are important determinants of the pattern of proteoglycan accumulation. With perfusion, the proteoglycan profile is skewed, and decreases or increases in magnitude depending on the level of flow-based stimulation. Utilization of a semi-permeable membrane with or without unidirectional flow may lead to tissues with depth-increasing proteoglycan content, resembling native articular cartilage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that the depth of focus (DOF) of the human eye can be affected by the higher order aberrations. We estimated the optimal combinations of primary and secondary Zernike spherical aberration to expand the DOF and evaluated their efficiency in real eyes using an adaptive optics system. The ratio between increased DOF and loss of visual acuity was used as the performance indicator. The results indicate that primary or secondary spherical aberration alone shows similar effectiveness in extending the DOF. However, combinations of primary and secondary spherical aberration with different signs provide better efficiency for expanding the DOF. This finding suggests that the optimal combinations of primary and secondary spherical aberration may be useful in the design of optical presbyopic corrections. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Texture analysis and textural cues have been applied for image classification, segmentation and pattern recognition. Dominant texture descriptors include directionality, coarseness, line-likeness etc. In this dissertation a class of textures known as particulate textures are defined, which are predominantly coarse or blob-like. The set of features that characterise particulate textures are different from those that characterise classical textures. These features are micro-texture, macro-texture, size, shape and compaction. Classical texture analysis techniques do not adequately capture particulate texture features. This gap is identified and new methods for analysing particulate textures are proposed. The levels of complexity in particulate textures are also presented ranging from the simplest images where blob-like particles are easily isolated from their back- ground to the more complex images where the particles and the background are not easily separable or the particles are occluded. Simple particulate images can be analysed for particle shapes and sizes. Complex particulate texture images, on the other hand, often permit only the estimation of particle dimensions. Real life applications of particulate textures are reviewed, including applications to sedimentology, granulometry and road surface texture analysis. A new framework for computation of particulate shape is proposed. A granulometric approach for particle size estimation based on edge detection is developed which can be adapted to the gray level of the images by varying its parameters. This study binds visual texture analysis and road surface macrotexture in a theoretical framework, thus making it possible to apply monocular imaging techniques to road surface texture analysis. Results from the application of the developed algorithm to road surface macro-texture, are compared with results based on Fourier spectra, the auto- correlation function and wavelet decomposition, indicating the superior performance of the proposed technique. The influence of image acquisition conditions such as illumination and camera angle on the results was systematically analysed. Experimental data was collected from over 5km of road in Brisbane and the estimated coarseness along the road was compared with laser profilometer measurements. Coefficient of determination R2 exceeding 0.9 was obtained when correlating the proposed imaging technique with the state of the art Sensor Measured Texture Depth (SMTD) obtained using laser profilometers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gait energy images (GEIs) and its variants form the basis of many recent appearance-based gait recognition systems. The GEI combines good recognition performance with a simple implementation, though it suffers problems inherent to appearance-based approaches, such as being highly view dependent. In this paper, we extend the concept of the GEI to 3D, to create what we call the gait energy volume, or GEV. A basic GEV implementation is tested on the CMU MoBo database, showing improvements over both the GEI baseline and a fused multi-view GEI approach. We also demonstrate the efficacy of this approach on partial volume reconstructions created from frontal depth images, which can be more practically acquired, for example, in biometric portals implemented with stereo cameras, or other depth acquisition systems. Experiments on frontal depth images are evaluated on an in-house developed database captured using the Microsoft Kinect, and demonstrate the validity of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although there are widely accepted and utilized models and frameworks for nondirective counseling (NDC), there is little in the way of tools or instruments designed to assist in determining whether or not a specific episode of counseling is consistent with the stated model or framework. The Counseling Progress and Depth Rating Instrument (CPDRI) was developed to evaluate counselor integrity in the use of Egan's skilled helper model in online counseling. The instrument was found to have sound internal consistency, good interrater reliability, and good face and convergent validity. The CPDRI is, therefore, proposed as a useful tool to facilitate investigation of the degree to which counselors adhere to and apply a widely used approach to NDC

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increase of powerful mobile devices has accelerated the demand for mobile videos. Previous studies in mobile video have focused on understanding of mobile video usage, improvement of video quality, and user interface design in video browsing. However, research focusing on a deep understanding of users’ needs for a pleasing quality delivery of mobile video is lacking. In particular, what quality-delivery mode users prefer and what information relevant to video quality they need requires attention. This paper presents a qualitative interview study with 38 participants to gain an insight into three aspects: influencing factors of user-desired video quality, user-preferred quality-delivery modes, and user-required interaction information of mobile video. The results show that user requirements for video quality are related to personal preference, technology background and video viewing experience, and the preferred quality-delivery mode and interactive mode are diverse. These complex user requirements call for flexible and personalised quality delivery and interaction of mobile video.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Web has become a worldwide repository of information which individuals, companies, and organizations utilize to solve or address various information problems. Many of these Web users utilize automated agents to gather this information for them. Some assume that this approach represents a more sophisticated method of searching. However, there is little research investigating how Web agents search for online information. In this research, we first provide a classification for information agent using stages of information gathering, gathering approaches, and agent architecture. We then examine an implementation of one of the resulting classifications in detail, investigating how agents search for information on Web search engines, including the session, query, term, duration and frequency of interactions. For this temporal study, we analyzed three data sets of queries and page views from agents interacting with the Excite and AltaVista search engines from 1997 to 2002, examining approximately 900,000 queries submitted by over 3,000 agents. Findings include: (1) agent sessions are extremely interactive, with sometimes hundreds of interactions per second (2) agent queries are comparable to human searchers, with little use of query operators, (3) Web agents are searching for a relatively limited variety of information, wherein only 18% of the terms used are unique, and (4) the duration of agent-Web search engine interaction typically spans several hours. We discuss the implications for Web information agents and search engines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an iterative hierarchical algorithm for multi-view stereo. The algorithm attempts to utilise as much contextual information as is available to compute highly accurate and robust depth maps. There are three novel aspects to the approach: 1) firstly we incrementally improve the depth fidelity as the algorithm progresses through the image pyramid; 2) secondly we show how to incorporate visual hull information (when available) to constrain depth searches; and 3) we show how to simultaneously enforce the consistency of the depth-map by continual comparison with neighbouring depth-maps. We show that this approach produces highly accurate depth-maps and, since it is essentially a local method, is both extremely fast and simple to implement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A time-resolved inverse spatially offset Raman spectrometer was constructed for depth profiling of Raman-active substances under both the lab and the field environments. The system operating principles and performance are discussed along with its advantages relative to traditional continuous wave spatially offset Raman spectrometer. The developed spectrometer uses a combination of space- and time-resolved detection in order to obtain high-quality Raman spectra from substances hidden behind coloured opaque surface layers, such as plastic and garments, with a single measurement. The time-gated spatially offset Raman spectrometer was successfully used to detect concealed explosives and drug precursors under incandescent and fluorescent background light as well as under daylight. The average screening time was 50 s per measurement. The excitation energy requirements were relatively low (20 mW) which makes the probe safe for screening hazardous substances. The unit has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than previous picosecond-based systems, to provide a functional platform for in-line or in-field sensing of chemical substances.