55 resultados para phytomass
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
The structure of Brazilian savannah, named locally as “cerrado”, tends to change if the human pressures, such as pasture and intensive fire, are suppressed showing a densification of the physiognomies throughout the time. Vegetation Index acquired from remotely sensed data has been a proper way to study and monitoring large areas, and the Normalized Difference Vegetation Index (NDVI) is one of the most used for this purpose. The aim of this study was to assess the dynamic of structural changes in protected and non-protected areas of cerrado vegetation using NDVI. For this purpose, three cerrado fragments in the state of São Paulo, Brazil, were evaluated for a 26 year time span from 1985 and 2011, being two of them protected against anthropogenic interference. Landsat 5 –Thematic Mapper images were used and processed in ArcGIS. In the protected areas NDVI indicated that the vegetation followed the expected trend of changes for cerrado, with more open physiognomies tending to be denser throughout this period of 26 years, whereas in the non-protected fragment the NDVI evidences human pressure, showing lower phytomass in 2011. NDVI showed to be efficient in detecting and monitoring changes in cerrado vegetation structure, and can be useful to study both, the natural dynamics of cerrado vegetation and the anthropogenic interference in protected areas.
Resumo:
Fertigation management of gerbera crop has been many times performed inadequately, and it has been worsened when mixtures of substrates with different physical and chemical characteristics are used. Aiming at evaluating the production and quality of potted gerbera in two substrates and different levels of fertigation, the experiment was conducted in the greenhouse of the DRN/Soil Science, FCA/UNESP, Botucatu (SP). A 5 x 2 factorial randomized block design (5 levels of fertigation and 2 substrates) was adopted with 4 replications. Levels of fertigation corresponded to maintenance of 100% available water (AW) in the substrate; 100 to 80% of AW; 100 to 60% of AW; 100 to 40% of AW and 100 to 20% of AW. The substrates were as follows: 1- mixed coconut fiber (50% pellet coconut fiber and 50% coir fiber), 2- 40% red soil, 40% decomposed pine bark, 10% composition 1 (40% decomposed pine bark, 30% vermiculite and 30% carbonized rice husk) and 10% composition 2 (75% decomposed pine bark and 25% needles of pine). Plants at the marketing stage were evaluated according to the number of leaves; diameter of leaf surface; leaf area; fresh and dry phytomass of leaves, inflorescence and total plant; inflorescence number and diameter, stem diameter, plant height, leaf area rate and electrical conductivity of the substrate solution. Plants of better quality were obtained when they were maintained in levels of 100% available water and the mixed coconut fiber was used as substrate.
Resumo:
Species coexistence and local-scale species richness are limited by the availability of seeds and microsites for germination and establishment. We conducted a seed addition experiment in seminatural grassland at three sites in southern Switzerland and repeated the experiment in two successive years to evaluate various circumstances under which seed limitation and establishment success affect community functioning. A collection of 144000 seeds of 22 meadow species including grasses and forbs of local provenance was gathered, and seeds were individually sown in a density that resembled natural seed rain. The three communities were seed limited. Three years after sowing, single species varied in emergence (0–50%), survival (0–69%), and establishment rates (0–27%). One annual and 13 perennial species reached reproductive stage. Low establishment at one site and reduced growth at another site indicated stronger microsite limitation compared to the third site. Recruitment was influenced by differences in abiotic environmental conditions between sites (water availability, soil minerals) and by within-site differences in biotic interaction (competition). At the least water-limited site, sowing resulted in an increase in phytomass due to establishment of short-lived perennials in the second and third years after sowing. This increase persisted over the following two years due to establishment of longer-lived perennials. After sowing in a wetter year with higher phytomass, however, productivity did not increase, because higher intensity of competition in an early phase of establishment resulted in less vigorous plants later on. Due to the generally favorable weather conditions during this study, sowing year had a small effect on numbers of established individuals over all species. Recruitment limitation can thus constrain local-scale species richness and productivity, either by a lack of seeds or by reduced seedling growth, likely due to competition from the established vegetation.
Resumo:
The Alpine region is warming fast, and concurrently, the frequency and intensity of climate extremes are increasing. It is currently unclear whether alpine ecosystems are sensitive or resistant to such extremes. We subjected Swiss alpine grassland communities to heat waves with varying intensity by transplanting monoliths to four different elevations (2440–660 m above sea level) for 17 d. Half of these were regularly irrigated while the other half were deprived of irrigation to additionally induce a drought at each site. Heat waves had no significant impacts on fluorescence (Fv/Fm, a stress indicator), senescence and aboveground productivity if irrigation was provided. However, when heat waves coincided with drought, the plants showed clear signs of stress, resulting in vegetation browning and reduced phytomass production. This likely resulted from direct drought effects, but also, as measurements of stomatal conductance and canopy temperatures suggest, from increased high-temperature stress as water scarcity decreased heat mitigation through transpiration. The immediate responses to heat waves (with or without droughts) recorded in these alpine grasslands were similar to those observed in the more extensively studied grasslands from temperate climates. Responses following climate extremes may differ in alpine environments, however, because the short growing season likely constrains recovery.
Resumo:
Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982-2010). We found that the southernmost tundra subzones (C-E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field.