959 resultados para physical layer network coding


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, weconsider switch-and-stay combining (SSC) in two-way relay systems with two amplify-and-forward relays, one of which is activated to assist the information exchange between the two sources. The system operates in either analog network coding (ANC) protocol where the communication is only achieved with the help of the active relay or timedivision broadcast (TDBC) protocol where the direct link between two sources can be utilized to exploit more diversity gain. In both cases, we study the outage probability and bit error rate (BER) for Rayleigh fading channels. In particular, we derive closed-form lower bounds for the outage probability and the average BER, which remain tight for different fading conditions. We also present asymptotic analysis for both the outage probability and the average BER at high signalto-noise ratio. It is shown that SSC can achieve the full diversity order in two-way relay systems for both ANC and TDBC protocols with proper switching thresholds. Copyright © 2014 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unlike the mathematical encryption and decryption adopted in the classical cryptographic technology at the higher protocol layers, it is shown that characteristics intrinsic to the physical layer, such as wireless channel propagation, can be exploited to lock useful information. This information then can be automatically unlocked using real time analog RF means. In this paper retrodirective array, RDA, technology for spatial encryption in the multipath environment is for the first time combined with the directional modulation, DM, method normally associated with free space secure physical layer communications. We show that the RDA can be made to operate more securely by borrowing DM concepts and that the DM enhanced RDA arrangement is suitable for use in a multipath environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new encryption scheme implemented at the physical layer of wireless networks employing orthogonal frequency-division multiplexing (OFDM). The new scheme obfuscates the subcarriers by randomly reserving several subcarriers for dummy data and resequences the training symbol by a new secure sequence. Subcarrier obfuscation renders the OFDM transmission more secure and random, while training symbol resequencing protects the entire physical layer packet, but does not affect the normal functions of synchronization and channel estimation of legitimate users while preventing eavesdroppers from performing these functions. The security analysis shows the system is robust to various attacks by analyzing the search space using an exhaustive key search. Our scheme is shown to have a better performance in terms of search space, key rate and complexity in comparison with other OFDM physical layer encryption schemes. The scheme offers options for users to customize the security level and key rate according to the hardware resource. Its low complexity nature also makes the scheme suitable for resource limited devices. Details of practical design considerations are highlighted by applying the approach to an IEEE 802.11 OFDM system case study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The creation of Wireless Personal Area Networks (WPANs) offers the Consumer Electronics industry a mechanism to truly unwire consumer products, leading to portability and ease of installation as never seen before. WPAN's can offer data-rates exceeding those that are required to convey high quality broadcast video, thus users can easily connect to high quality video for multimedia presentations in education, libraries, advertising, or have a wireless connection at home. There have been many WPAN proposals, but this paper concentrates on ECMA-368 as this standard has the largest industrial and implementers' forum backing. This paper discusses the technology behind ECMA-368, the required numerical bandwidth, buffer memory requirements and implementation considerations while concentrating on supporting all the offered data-rates'.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The creation of Wireless Personal Area Networks (WPANs) offers the Consumer Electronics industry a mechanism to truly unwire consumer products, leading to portability and ease of installation as never seen before. WPAN's can offer data-rates exceeding those that are required to convey high quality broadcast video, thus users can easily connect to high quality video for multimedia presentations in education, libraries, advertising, or have a wireless connection at home. There have been many WPAN proposals, but this paper concentrates on ECMA-368 as this standard has the largest industrial and implementers' forum backing. With the aim to effective consumer electronic define and create cost equipment this paper discusses the technology behind ECMA-368 physical layer, the design freedom availabilities, the required processing, buffer memory requirements and implementation considerations while concentrating on supporting all the offered data-rates(1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel interference cancellation algorithm for the two-path successive relay system using network coding. The two-path successive relay scheme was proposed recently to achieve full date rate transmission with half-duplex relays. Due to the simultaneous data transmission at the relay and source nodes, the two-path relay suffers from the so-called inter-relay interference (IRI) which may significantly degrade the system performance. In this paper, we propose to use the network coding to remove the IRI such that the interference is first encoded with the network coding at the relay nodes and later removed at the destination. The network coding has low complexity and can well suppress the IRI. Numerical simulations show that the proposed algorithm has better performance than existing approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With more and more multimedia applications on the Internet, such as IPTV, bandwidth becomes a vital bottleneck for the booming of large scale Internet based multimedia applications. Network coding is recently proposed to take advantage to use network bandwidth efficiently. In this paper, we focus on massive multimedia data, e.g. IPTV programs, transportation in peer-to-peer networks with network coding. By through study of networking coding, we pointed out that the prerequisites of bandwidth saving of network coding are: 1) one information source with a number of concurrent receivers, or 2) information pieces cached at intermediate nodes. We further proof that network coding can not gain bandwidth saving at immediate connections to a receiver end; As a result, we propose a novel model for IPTV data transportation in unstructured peer-to-peer networks with network coding. Our preliminary simulations show that the proposed architecture works very well.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network coding has shown the promise of significant throughput improvement. In this paper, we study the throughput of two-hop wireless network coding and explore how the maximum throughput can be achieved under a random medium access scheme. Unlike previous studies, we consider a more practical network where the structure of overhearing status between the intended receivers and the transmitters is arbitrary. We make a formal analysis on the network throughput using network coding upon the concept of network coding cliques (NCCs). The analysis shows that the maximum normalized throughput, subject to fairness requirement, is n/n+m, where n is the number of transmitters and m is the number of NCCs in a 2-hop wireless network. We have also found that this maximum throughput can be achieved under a random medium access scheme when the medium access priority of the relay node is equal to the number of NCCs in the network. Our theoretical findings have been validated by simulation as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In traditional stop-and-wait strategy for reliable communications, such as ARQ, retransmission for the packet loss problem would incur a great number of packet transmissions in lossy wireless ad-hoc networks. We study the reliable multicast lifetime maximization problem by alternatively exploring the random linear network coding in this paper. We formulate such problem as a min-max problem and propose a heuristic algorithm, called maximum lifetime tree (MLT), to build a multicast tree that maximizes the network lifetime. Simulation results show that the proposed algorithms can significantly increase the network lifetime when compared with the traditional algorithms under various distributions of error probability on lossy wireless links.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multicast is an important mechanism in modern wireless networks and has attracted significant efforts to improve its performance with different metrics including throughput, delay, energy efficiency, etc. Traditionally, an ideal loss-free channel model is widely used to facilitate routing protocol design. However, the quality of wireless links would be affected or even jeopardized by many factors like collisions, fading or the noise of environment. In this paper, we propose a reliable multicast protocol, called CodePipe, with advanced performance in terms of energy-efficiency, throughput and fairness in lossy wireless networks. Built upon opportunistic routing and random linear network coding, CodePipe not only simplifies transmission coordination between nodes, but also improves the multicast throughput significantly by exploiting both intra-batch and inter-batch coding opportunities. In particular, four key techniques, namely, LP-based opportunistic routing structure, opportunistic feeding, fast batch moving and inter-batch coding, are proposed to offer substantial improvement in throughput, energy-efficiency and fairness. We evaluate CodePipe on ns2 simulator by comparing with other two state-of-art multicast protocols, MORE and Pacifier. Simulation results show that CodePipe significantly outperforms both of them.