876 resultados para phthalic acids
Resumo:
This work reports on the synthesis of a wide range of ferrocenyl-substituted amino acids and peptides in excellent yield. Conjugation is established via copper-catalyzed 1,3-dipolar cycloaddition. Two complementary strategies were employed for conjugation, one involving cycloaddition of amino acid derived azides with ethynyl ferrocene 1 and the other involves cycloaddition between amino acid derived alkynes with ferrocene-derived azides 2 and 3. Labeling of amino acids at multiple sites with ferrocene is discussed. A new route to 1,1'-unsymmetrically substituted ferrocene conjugates is reported. A novel ferrocenophane 19 is accessed via bimolecular condensation of amino acid derived bis-alkyne 9b with the azide 2. The electrochemical behavior of some selected ferrocene conjugates has been studied by cyclic voltammetry.
Resumo:
The band characteristic of the OH group has been recorded in the Raman spectra of many hydroxides and alcohols. It has not so far been observed, however, in the case of the stronger acids. Using the improved technique of complementary filters recently developed by Ananthakrishnan1, and giving long exposures varying from six to twelve days, I have succeeded in obtaining spectra with sulphuric acid and crystals of iodic, selenious and telluric acids, in which the band is clearly seen in the 4046 A. excitation. Table 1 gives the frequency shifts. The value for boric acid is taken from Ananthakrishnan's paper2.
Resumo:
The Watson-Crick type of base pairing is considered to be mandatory for the formation of duplex DNA. However, conformational calculations carried out in our laboratory, have shown that some combinations of backbone torsion angles and sugar pucker lead to duplexes with Hoogsteen type of base pairing also. Here we present the results of energy calculations performed on A-T containing doublet sequences in the D-form with both Hoogsteen and Watson-Crick type of base pairing and the 3 viable models for the A-T containing polynucleotide duplex poly[d(A-T)].
Resumo:
The crystal structures of (1) L-arginine D-asparate, C6HIsN40~.C4H6NO4 [triclinic, P1, a=5.239(1), b=9.544(1), c=14.064(2)A, a=85"58(1), /3=88.73 (1), ~/=84.35 (1) °, Z=2] and (2) L-arginine D-glutamate trihydrate, C6H15N40~-.CsHsNO4.3H20 [monoclinic, P2~, a=9.968(2), b=4.652(1), c=19.930 (2) A, fl = 101.20 (1) °, Z = 2] have been determined using direct methods. They have been refined to R =0.042 and 0.048 for 2829 and 2035 unique reflections respectively [I>2cr(I)]. The conformations of the two arginine molecules in the aspartate complex are different from those observed so far in the crystal structures of arginine, its salts and complexes. In both complexes, the molecules are organized into double layers stacked along the longest axis. The core of each double layer consists of two parallel sheets made up of main-chain atoms, each involving both types of molecules. The hydrogen bonds within each sheet and those that interconnect the two sheets give rise to EL-, DD- and DE-type head-to-tail sequences. Adjacent double layers in (1) are held together by side-chain-side-chain interactions whereas those in (2) are interconnected through an extensive network of water molecules which interact with sidechain guanidyl and carboxylate groups. The aggregation pattern observed in the two LD complexes is fundamentally different from that found in the corresponding EL complexes.
Resumo:
The host-guest technique has been applied to the determination of the helix-coil stability constants of two naturally occurring amino acids, L-alanine and L-leucine, in a nonaqueous solvent system. Random copolymers containing L-alanine and L-leucine, respectively, as guest residues and -benzyl-L-glutamate as the host residue were synthesized. The polymers were fractionated and characterized for their amino acid content, molecular weight, and helix-coil transition behavior in a dichloroacetic acid (DCA)-1,2-dichloroethane (DCE) mixture. Two types of helix-coil transitions were carried out on the copolymers: solvent-induced transitions in DCA-DCE mixtures at 25°C and thermally induced transitions in a 82:18 (wt %) DCA-DCE mixture. The thermally induced transitions were analyzed by statistical mechanical methods to determine the Zimm-Bragg parameters, and s, of the guest residues. The experimental data indicate that, in the nonaqueous solvent, the L-alanine residue stabilizes the -helical conformation more than the L-leucine residue does. This is in contrast to their behavior in aqueous solution, where the reverse is true. The implications of this finding for the analysis of helical structures in globular proteins are discussed.
Resumo:
In order to understand the molecular mechanism of non-oxidative decarboxylation of aromatic acids observed in microbial systems, 2,3 dihydroxybenzoic acid (DHBA) decarboxylase from Image Image was purified to homogeneity by affinity chromatography. The enzyme (Mr 120 kDa) had four identical subunits (28 kDa each) and was specific for DHBA. It had a pH optimum of 5.2 and Km was 0.34mM. The decarboxylation did not require any cofactors, nor did the enzyme had any pyruvoyl group at the active site. The carboxyl group and hydroxyl group in the Image -position were required for activity. The preliminary spectroscopic properties of the enzyme are also reported.
Resumo:
A new form of L-histidine L-aspartate monohydrate crystallizes in space group P22 witha = 5.131(1),b = 6.881(1),c= 18.277(2) Å,β= 97.26(1)° and Z = 2. The structure has been solved by the direct methods and refined to anR value of 0.044 for 1377 observed reflections. Both the amino acid molecules in the complex assume the energetically least favourable allowed conformation with the side chains staggered between the α-amino and α-scarboxylate groups. This results in characteristic distortions in some bond angles. The unlike molecules aggregate into alternating double layers with water molecules sandwiched between the two layers in the aspartate double layer. The molecules in each layer are arranged in a head-to-tail fashion. The aggregation pattern in the complex is fundamentally similar to that in other binary complexes involving commonly occurring L amino acids, although the molecules aggregate into single layers in them. The distribution of crystallographic (and local) symmetry elements in the old form of the complex is very different from that in the new form. So is the conformation of half the histidine molecules. Yet, the basic features of molecular aggregation, particularly the nature and the orientation of head-to-tail sequences, remain the same in both the forms. This supports the thesis that the characteristic aggregation patterns observed in crystal structures represent an intrinsic property of amino acid aggregation.
Resumo:
Bovine serum albumin conjugates of two trinucleotides, dpTpTpA and dTpTpAp, were prepared by linking the trinucleotides through their end phosphates by the ‘carbodiimide method’. Antibodies were raised in rabbits by injecting the trinucleotide-bovine serum albumin conjugates. Analysis by double diffusion in agar gel, quantitative precipitin reaction and its inhibition by haptens showed clearly the presence of antibodies specific to the whole trinucleotide molecule. The titre of antibodies obtained by the trinucleotide-rabbit serum albumin conjugates with their respective antisera was approximately the same, indicating that linking the trinucleotide through either 5′ or 3′ phosphate does not have an appreciable effect on the titre of antibodies. The results also demonstrate that the nucleotide(s) away from the carrier protein is more immunodominant than the one linked directly to the protein.
Resumo:
The nucleic acid binding properties of the testis protein, TP, were studied with the help of physical techniques, namely, fluorescence quenching, UV difference absorption spectroscopy, and thermal melting. Results of quenching of tyrosine fluorescence of TP upon its binding to double-stranded and denatured rat liver nucleosome core DNA and poly(rA) suggest that the tyrosine residues of TP interact/intercalate with the bases of these nucleic acids. From the fluorescence quenching data, obtained at 50 mM NaCl concentration, the apparent association constants for binding of TP to native and denatured DNA and poly(rA) were calculated to be 4.4 X 10(3) M-1, 2.86 X 10(4) M-1, and 8.5 X 10(4) M-1, respectively. UV difference absorption spectra upon TP binding to poly(rA) and rat liver core DNA showed a TP-induced hyperchromicity at 260 nm which is suggestive of local melting of poly(rA) and DNA. The results from thermal melting studies of binding of TP to calf thymus DNA at 1 mM NaCl as well as 50 mM NaCl showed that although at 1 mM NaCl TP brings about a slight stabilization of the DNA against thermal melting, a destabilization of the DNA was observed at 50 mM NaCl. From these results it is concluded that TP, having a higher affinity for single-stranded nucleic acids, destabilizes double- stranded DNA, thus behaving like a DNA-melting protein.
Resumo:
A compilation of crystal structure data on deoxyribo- and ribonucleosides and their higher derivatives is presented. The aim of this paper is to highlight the flexibility of deoxyribose and ribose rings. So far, the conformational parameters of nucleic acids constituents of ribose and deoxyribose have not been analysed separately. This paper aims to correlate the conformational parameters with the nature and puckering of the sugar. Deoxyribose puckering occurs in the C2′ endo region while ribose puckering is observed both in the C3′ endo and C2′ endo regions. A few endocyclic and exocyclic bond angles depend on the puckering and the nature of the sugar. The majority of structures have an anti conformation about the glycosyl bond. There appears to be a puckering dependence on the torsion angle about the C4′---C5′ bonds. Such stereochemical information is useful in model building studies of polynucleotides and nucleic acids.
Resumo:
A novel method for the construction of carboncarbon bonds is described in which anions obtained by the metal-ammonia reduction of benzoic acid and its derivatives undergo ready Michael reaction with methyl crotonate to give the addition products.