921 resultados para phrenic nerve discharge
Resumo:
GABAergic, nitrergic and glutamatergic mechanisms in the PVN on the baseline mean arterial pressure (MAP), heart rate (HR) and on the cardiovascular responses to chemoreflex activation in awake rat were evaluated. Chemoreflex was activated with KCN before and after microinjections into the PVN. Bicuculline into the PVN increased baseline MAP (94+/-3 vs 113+/-5 mmHg) and HR (350+/-9 vs 439+/-18 bpm) but had no effect on the pressor (49+/-5 vs 47+/-6 mmHg) or bradicardic (-213+/-23 vs -256+/-42 bpm) responses (n=7). Kynurenic acid into the PVN (n=6) produced no significant changes in the MAP (98+/-3 vs 100+/-3 mmHg), HR (330+/-5 vs 339+/-12 mmHg) or in the pressor (50+/-4 vs 42+/-4 mmHg) and bradicardic (-252+/-4 vs -285+/-16 bpm) responses to chemoreflex. L-NAME into the PVN (n=8) produced increase in the MAP (94+/-3 vs 113+/-5 mmHg) and HR (350+/-9 vs 439+/-18 bpm) but had no effect on the pressor (52+/-5 vs 47+/-6 mmHg) or bradicardic (-253+/-19 vs -320+/-25 bpm) responses to chemoreflex. We conclude that GABA(A) and nitric oxide in the PVN are involved in the maintenance of the baseline MAP but not in the modulation of the responses to chemoreflex. The results also show that Glutamate receptors in the PVN are not involved in maintenance of the baseline MAP, HR or in the cardiovascular responses to chemoreflex in awake rats. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Peripheral chemoreflex activation in awake rats or in the working heart-brainstem preparation (WHBP) produces sympathoexcitation, bradycardia and an increase in the frequency of phrenic nerve activity. Our focus is the neurotransmission of the sympathoexcitatory component of the chemoreflex within the nucleus of the tractus solitarius (NTS), and recently we verified that the simultaneous antagonism of ionotropic glutamate and purinergic P(2) receptors in the NTS blocked the pressor response and increased thoracic sympathetic activity in awake rats and WHBP, respectively, in response to peripheral chemoreflex activation. These previous data suggested the involvement of ATP and L-glutamate in the NTS in the processing of the sympathoexcitatory component of the chemoreflex by unknown mechanisms. For a better understanding of these mechanisms, here we used a patch-clamp approach in brainstem slices to evaluate the characteristics of the synaptic transmission of NTS neurons sending projections to the ventral medulla, which include the premotor neurons involved in the generation of the sympathetic outflow. The NTS neurons sending projections to the ventral medulla were identified by previous microinjection of the membrane tracer dye, 1,1`-dioctadecyl-3,3,3`,3`-tetramethylindocarbocyanine perchlorate (DiI), in the ventral medulla and the spontaneous (sEPSCs) and tractus solitarius (TS)-evoked excitatory postsynaptic current (TS-eEPSCs) were recorded using patch clamp. With this approach, we made the following observations on NTS neurons projecting to the ventral medulla: (i) the sEPSCs and TS-eEPSCs of DiI-labelled NTS neurons were completely abolished by 6,7-dinitroquinoxaline-2,3(1H,4H)-dione (DNQX), an antagonist of ionotropic non-NMDA glutamatergic receptors, showing that they are mediated by L-glutamate; (ii) application of ATP increased the frequency of appearance of spontaneous glutamatergic currents, reflecting an increased exocytosis of glutamatergic vesicles; and (iii) ATP decreased the peak of TS-evoked glutamatergic currents. We conclude that L-glutamate is the main neurotransmitter of spontaneous and TS-evoked synaptic activities in the NTS neurons projecting to the ventral medulla and that ATP has a dual modulatory role on this excitatory transmission, facilitating the spontaneous glutamatergic transmission and inhibiting the TS-evoked glutamatergic transmission. These data also suggest that ATP is not acting as a cotransmitter with L-glutamate, at least at the level of this subpopulation of NTS neurons studied.
Resumo:
In the present study we evaluated the role of ionotropic glutamate receptors and purinergic P2 receptors in the caudal commissural NTS (cNTS) on the modulation of the baseline respiratory frequency (fR), and on the tachypneic response to chemoreflex activation in awake rats. The selective antagonism of ionotropic glutamate receptors with kynurenic acid (2 nmol/50 nl) in the cNTS produced a significant increase in the baseline fR but no changes in the tachypneic response to chemoreflex activation. The selective antagonism of purinergic P2 receptors by PPADS (0.25 nmol/50 nl) in the cNTS produced no changes in the baseline fR or in the tachypneic response to chemoreflex activation. The data indicate that glutamate acting on ionotropic receptors in the cNTS plays a inhibitory role on the modulation of the baseline fR but had no effect on the tachypneic response to chemoreflex activation, while ATP acting on P2 receptors in the cNTS plays no major role in the modulation of the baseline fR or in the tachypneic response to chemoreflex activation. We suggest that neurotransmitters other than L-glutamate and ATP are involved in the processing of the tachypneic response of the chemoreflex at the cNTS level. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Casearia sylvestris Sw., popularly known in Brazil as `guacatonga`, has been used as antitumor, antiseptic, antiulcer, local anaesthetic and healer in folk medicine. Snakebite envenomation by Bothrops jararacussu (Bjssu) constitutes a relevant public health hazard capable of inducing serious local damage in victims. This study examined the pharmacological action of apolar and polar C sylvestris leaf extracts in reverting the neuromuscular blockade and myonecrosis, which is induced by Bjssu venom and its major toxin bothropstoxin-I on the mouse phrenic nerve-diaphragm preparations. The polar methanol extract (ME) was by far the most efficacious. ME not only prevented myonecrosis and abolished the blockade, but also increased ACh release. Such facilitation in neuromuscular transmission was observed with ME alone, but was accentuated in preparations incubated with ME plus venom or toxin. This established synergy opens an interesting point of investigation because the venom or toxin in contact with ME changes from a blocking to a facilitating effect. It is suggested that rutin, known to have potent antioxidant properties, and one of the components present in the ME, could have a role in the observed effects. Since commercial rutin did not reproduce the ME effects, it is likely that a rutin-containing phytocomplex is neutralizing the bothropic envenoming effects. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Fluctuations in estrogen and progesterone during the menstrual cycle can cause changes in body systems other than the reproductive system. For example, progesterone is involved in the regulation of fluid balance in the renal tubules and innervation of the diaphragm via the phrenic nerve. However, few significant changes in the responses of the cardiovascular and respiratory systems, blood lactate, bodyweight, performance and ratings of perceived exertion are evident across the cycle. Nevertheless, substantial evidence exists to suggest that increased progesterone levels during the luteal phase cause increases in both core and skin temperatures and alter the temperature at which sweating begins during exposure to both ambient and hot environments. As heat illness is characterised by a significant increase in body temperature, it is feasible that an additional increase in core temperature during the luteal phase could place females at an increased risk of developing heat illness during this time. In addition, it is often argued that physiological gender differences such as oxygen consumption, percentage body fat and surface area-to-mass ratio place females at a higher risk of heat illness than males. This review examines various physiological responses to heat exposure during the menstrual cycle at rest and during exercise, and considers whether such changes increase the risk of heat illness in female athletes during a particular phase of the menstrual cycle.
Resumo:
1. Tiger snake antivenom, raised against Notechis scutatus venom, is indicated not only for the treatment of envenomation by this snake, but also that of the copperhead (Austrelaps superbus ) and Stephen's banded snake (Hoplocephalus stephensi ). The present study compared the neuromuscular pharmacology of venom from these snakes and the in vitro efficacy of tiger snake antivenom. 2. In chick biventer cervicis muscle and mouse phrenic nerve diaphragm preparations, all venoms (3-10 mug/mL) produced inhibition of indirect twitches. In the biventer muscle, venoms (10 mug/mL) inhibited responses to acetylcholine (1 mmol/L) and carbachol (20 mumol/L), but not KCl (40 mmol/L). The prior (10 min) administration of 1 unit/mL antivenom markedly attenuated the neurotoxic effects of A. superbus and N. scutatus venoms (10 mug/mL), but was less effective against H. stephensi venom (10 mug/mL); 5 units/mL antivenom attenuated the neurotoxic activity of all venoms. 3. Administration of 5 units/mL antivenom at t(90) partially reversed, over a period of 3 h, the inhibition of twitches produced by N. scutatus (10 mug/mL; 41% recovery), A. superbus (10 mug/mL; 25% recovery) and H. stephensi (10 mug/mL; 50% recovery) venoms. All venoms (10-100 mug/mL) also displayed signs of in vitro myotoxicity. 4. The results of the present study indicate that all three venoms contain neurotoxic activity that is effectively attenuated by tiger snake antivenom.
Finite element studies of the mechanical behaviour of the diaphragm in normal and pathological cases
Resumo:
The diaphragm is a muscular membrane separating the abdominal and thoracic cavities, and its motion is directly linked to respiration. In this study, using data from a 59-year-old female cadaver obtained from the Visible Human Project, the diaphragm is reconstructed and, from the corresponding solid object, a shell finite element mesh is generated and used in several analyses performed with the ABAQUS 6.7 software. These analyses consider the direction of the muscle fibres and the incompressibility of the tissue. The constitutive model for the isotropic strain energy as well as the passive and active strain energy stored in the fibres is adapted from Humphrey's model for cardiac muscles. Furthermore, numerical results for the diaphragmatic floor under pressure and active contraction in normal and pathological cases are presented.
Resumo:
Twitch mouth pressure (Pmo,tw) during magnetic phrenic nerve stimulation and sniff nasal inspiratory pressure (SNIP) were recently proposed as alternative noninvasive methods for assessing inspiratory muscle strength. This study aimed to compare their reproducibility with maximal inspiratory pressure (MIP) in normal subjects. Ten healthy subjects were studied at functional residual capacity in semirecumbent position. Cervical magnetic phrenic nerve stimulation was performed during gentle expiration against an occlusion incorporating a small leak. Constancy of stimulation was controlled by recording diaphragmatic electromyogram. Within and between-session reproducibility of pressure were studied for Pmo,tw, SNIP, and MIP. The subjects were studied during a session of 10 manoeuvres repeated after 1 day and 1 month. The mean values were 16 cmH2O for Pmo,tw, 118 cmH2O for SNIP, and 115 cmH2O for MIP. For the three tests, the within subject variation was small in relation to between-subject variation, with the intraclass correlation coefficient ranging 0.79-0.90 for Pmo,tw, 0.85-0.92 for SNIP, and 0.88-0.92 for MIP. At 1 day interval, the coefficient of repeatability (2 SD of differences) was 3.6 cmH2O for Pmo,tw, 32 cmH2O for SNIP and 28 cmH2O for MIP. At 1 month interval, the coefficient of repeatability was 5.8 cmH2O for Pmo,tw, 23 cmH2O for SNIP and 21 cmH2O for MIP. We conclude that the within session reproducibility of the new tests twitch mouth pressure and sniff nasal inspiratory pressure is sufficient to be clinically useful. For sniff nasal inspiratory pressure, the between session reproducibility established after 1 day was maintained after 1 month. For twitch mouth pressure, the between session reproducibility declined slightly after 1 month. These characteristics should be considered when using these methods to follow an individual patient over time.
Resumo:
Nitric oxide (NO)-synthase is present in diaphragm, phrenic nerve and vascular smooth muscle. It has been shown that the NO precursor L-arginine (L-Arg) at the presynaptic level increases the amplitude of muscular contraction (AMC) and induces tetanic fade when the muscle is indirectly stimulated at low and high frequencies, respectively. However, the precursor in muscle reduces AMC and maximal tetanic fade when the preparations are stimulated directly. In the present study the importance of NO synthesized in different tissues for the L-Arg-induced neuromuscular effects was investigated. Hemoglobin (50 nM) did not produce any neuromuscular effect, but antagonized the increase in AMC and tetanic fade induced by L-Arg (9.4 mM) in rat phrenic nerve-diaphragm preparations. D-Arg (9.4 mM) did not produce any effect when preparations were stimulated indirectly at low or high frequency. Hemoglobin did not inhibit the decrease of AMC or the reduction in maximal tetanic tension induced by L-Arg in preparations previously paralyzed with d-tubocurarine and directly stimulated. Since only the presynaptic effects induced by L-Arg were antagonized by hemoglobin, the present results suggest that NO synthesized in muscle acts on nerve and skeletal muscle. Nevertheless, NO produced in nerve and vascular smooth muscle does not seem to act on skeletal muscle.
Resumo:
The effects induced by nitric oxide (NO) in different tissues depend on direct and/or indirect interactions with K+ channels. The indirect interaction of NO is produced by activation of guanylyl cyclase which increases the intracellular cGMP. Since NO, cGMP and 4-aminopyridine alone induce tetanic fade and increase amplitude of muscular contractions in isolated rat neuromuscular preparations, the present study was undertaken to determine whether or not the neuromuscular effects of NO and 8-Br-cGMP can be modified by 4-aminopyridine. Using the phrenic nerve and diaphragm muscle isolated from male Wistar rats (200-250 g), we observed that L-arginine (4.7 mM) and 8-Br-cGMP (18 µM), in contrast to D-arginine, induced an increase in the amplitude of muscle contraction (10.5 ± 0.7%, N = 10 and 8.0 ± 0.7%, N = 10) and tetanic fade (15 ± 2.0%, N = 8 and 11.6 ± 1.7%, N = 8) at 0.2 and 50 Hz, respectively. N G-nitro-L-arginine (4 mM, N = 8 and 8 mM, N = 8) antagonized the effects of L-arginine. 4-Aminopyridine (1 and 10 µM) caused a dose-dependent increase in the amplitude of muscle contraction (15 ± 1.8%, N = 9 and 40 ± 3.1%, N = 10) and tetanic fade (17.7 ± 3.3%, N = 8 and 37.4 ± 1.3%, N = 8). 4-Aminopyridine (1 µM, N = 8) did not cause any change in muscle contraction amplitude or tetanic fade of preparations previously paralyzed with d-tubocurarine or stimulated directly. The effects induced by 4-aminopyridine alone were similar to those observed when the drug was administered in combination with L-arginine or 8-Br-cGMP. The data suggest that the blockage of K+ channels produced by 4-aminopyridine inhibits the neuromuscular effects induced by NO and 8-Br-cGMP. Therefore, the presynaptic effects induced by NO seem to depend on indirect interactions with K+ channels.
Resumo:
Carnitine, a structurally choline-like metabolite, has been used to increase athletic performance, although its effects on neuromuscular transmission have not been investigated. It is present in skeletal muscle and its plasma levels are about 30 to 90 µM. Using rat phrenic nerve diaphragm preparations indirectly and directly stimulated with high rate pulses, D-carnitine (30 and 60 µM), L-carnitine (60 µM) and DL-carnitine (60 µM) were shown to induce tetanic fade (D-carnitine = 19.7 ± 3.1%, N = 6; L-carnitine = 16.6 ± 2.4%, N = 6; DL-carnitine = 14.9 ± 2.1%, N = 6) without any reduction of maximal tetanic tension. D-carnitine induced tetanic fade in neuromuscular preparations previously paralyzed with d-tubocurarine and directly stimulated. The effect was greater than that obtained by indirect muscle stimulation. Furthermore, previous addition of atropine (20 to 80 µM) to the bath did not reduce carnitine isomer-induced tetanic fade. In contrast to D-carnitine, the tetanic fade induced by L- and DL-carnitine was antagonized by choline (60 µM). The combined effect of carnitine isomers and hemicholinium-3 (0.01 nM) was similar to the effect of hemicholinium-3 alone. The data suggest that L- and DL-carnitine-induced tetanic fade seems to depend on their transport into the motor nerve terminal.
Resumo:
The arterial partial pressure (P CO2) of carbon dioxide is virtually constant because of the close match between the metabolic production of this gas and its excretion via breathing. Blood gas homeostasis does not rely solely on changes in lung ventilation, but also to a considerable extent on circulatory adjustments that regulate the transport of CO2 from its sites of production to the lungs. The neural mechanisms that coordinate circulatory and ventilatory changes to achieve blood gas homeostasis are the subject of this review. Emphasis will be placed on the control of sympathetic outflow by central chemoreceptors. High levels of CO2 exert an excitatory effect on sympathetic outflow that is mediated by specialized chemoreceptors such as the neurons located in the retrotrapezoid region. In addition, high CO2 causes an aversive awareness in conscious animals, activating wake-promoting pathways such as the noradrenergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have projections that contribute to the CO2-induced rise in breathing and sympathetic outflow. However, since the level of activity of the retrotrapezoid nucleus is regulated by converging inputs from wake-promoting systems, behavior-specific inputs from higher centers and by chemical drive, the main focus of the present manuscript is to review the contribution of central chemoreceptors to the control of autonomic and respiratory mechanisms.
Resumo:
La butirilcolinesterasa humana (BChE; EC 3.1.1.8) es una enzima polimórfica sintetizada en el hígado y en el tejido adiposo, ampliamente distribuida en el organismo y encargada de hidrolizar algunos ésteres de colina como la procaína, ésteres alifáticos como el ácido acetilsalicílico, fármacos como la metilprednisolona, el mivacurium y la succinilcolina y drogas de uso y/o abuso como la heroína y la cocaína. Es codificada por el gen BCHE (OMIM 177400), habiéndose identificado más de 100 variantes, algunas no estudiadas plenamente, además de la forma más frecuente, llamada usual o silvestre. Diferentes polimorfismos del gen BCHE se han relacionado con la síntesis de enzimas con niveles variados de actividad catalítica. Las bases moleculares de algunas de esas variantes genéticas han sido reportadas, entre las que se encuentra las variantes Atípica (A), fluoruro-resistente del tipo 1 y 2 (F-1 y F-2), silente (S), Kalow (K), James (J) y Hammersmith (H). En este estudio, en un grupo de pacientes se aplicó el instrumento validado Lifetime Severity Index for Cocaine Use Disorder (LSI-C) para evaluar la gravedad del consumo de “cocaína” a lo largo de la vida. Además, se determinaron Polimorfismos de Nucleótido Simple (SNPs) en el gen BCHE conocidos como responsables de reacciones adversas en pacientes consumidores de “cocaína” mediante secuenciación del gen y se predijo el efecto delos SNPs sobre la función y la estructura de la proteína, mediante el uso de herramientas bio-informáticas. El instrumento LSI-C ofreció resultados en cuatro dimensiones: consumo a lo largo de la vida, consumo reciente, dependencia psicológica e intento de abandono del consumo. Los estudios de análisis molecular permitieron observar dos SNPs codificantes (cSNPs) no sinónimos en el 27.3% de la muestra, c.293A>G (p.Asp98Gly) y c.1699G>A (p.Ala567Thr), localizados en los exones 2 y 4, que corresponden, desde el punto de vista funcional, a la variante Atípica (A) [dbSNP: rs1799807] y a la variante Kalow (K) [dbSNP: rs1803274] de la enzima BChE, respectivamente. Los estudios de predicción In silico establecieron para el SNP p.Asp98Gly un carácter patogénico, mientras que para el SNP p.Ala567Thr, mostraron un comportamiento neutro. El análisis de los resultados permite proponer la existencia de una relación entre polimorfismos o variantes genéticas responsables de una baja actividad catalítica y/o baja concentración plasmática de la enzima BChE y algunas de las reacciones adversas ocurridas en pacientes consumidores de cocaína.
Resumo:
Inhibitory neurotransmission has an important role in the processing of sensory afferent signals in the nucleus of the solitary tract (NTS), particularly in spontaneously hypertensive rats (SHR). In the present study, we tested the hypothesis that gamma-aminobutyric acid (GABA) mediated neurotransmission within the NTS produces an inhibition of the baroreflex response of splanchnic sympathetic nerve discharge (sSND). In urethane-anesthetized, artificially ventilated and vagotomized male SHR and Wistar Kyoto (WKY) rats we compared baroreflex-response curves evoked after bilateral injections into the NTS of the GABA-A antagonist bicuculline (25 pmol/50 nl) or the GABA-B antagonist CGP 35348 (5 nmol/50 nl). Baseline MAP in SHR was higher than the WKY rats (SHR: 153+/-5, vs. WKY: 112+/-6 mm Hg, p<0.05). Bilateral injection of bicuculline or CGP 35348 into the NTS induced a transient (5 min) reduction in MAP (Delta = -26+/-4 and -41+/-6 mm Hg, respectively vs. saline Delta = +4+/-3 mm Hg, p<0.05) and sSND (Delta = -21+/-13 and -78+/-7%, respectively vs. saline: Delta = +6+/-4% p<0.05). Analysis of the baroreceptor curve revealed a decrease in the lower plateau (43+/-11 and 15+/-5%, respectively vs. saline: 78+/-6%, p<0.05) and an increase in the sympathetic gain of baroreflex (6.3+/-0.3, 7.2+/-0.8% respectively vs. saline: 4.2+/-0.4%, p<0.05). Bicuculline or CGP35348 into the NTS in WKY rats did not change MAP, sSND and sympathetic baroreflex gain. These data indicate that GABAergic mechanisms within the NTS act tonically reducing sympathetic baroreflex gain in SHR. Crown Copyright (C) 2010 Published by Elsevier By. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)