975 resultados para phospholipase A2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Lipoprotein-associated phospholipase A2 activity (Lp-PLA2) is a good marker of cardiovascular risk in adults. It is strongly associated with stroke and many others cardiovascular events. Despite this, the impact of obesity on this enzyme activity and its relation to biomarkers of cardiovascular disease in adolescents is not very well investigated. The purpose of this article is to evaluate the influence of obesity and cardiometabolic markers on Lp-PLA2 activity in adolescents. Results This cross-sectional study included 242 adolescents (10–19 years) of both gender. These subjects were classified in Healthy Weight (n = 77), Overweight (n = 82) and Obese (n = 83) groups. Lipid profile, glucose, insulin, HDL size, LDL(−) and anti-LDL(−) antibodies were analyzed. The Lp-PLA2 activity was determined by a colorimetric commercial kit. Body mass index (BMI), waist circumference and body composition were monitored. Food intake was evaluated using three 24-hour diet recalls. The Lp-PLA2 activity changed in function to high BMI, waist circumference and fat mass percentage. It was also positively associated with HOMA-IR, glucose, insulin and almost all variables of lipid profile. Furthermore, it was negatively related to Apo AI (β = −0.137; P = 0.038) and strongly positively associated with Apo B (β = 0.293; P < 0.001) and with Apo B/Apo AI ratio (β = 0.343; P < 0.001). The better predictor model for enzyme activity, on multivariate analysis, included Apo B/Apo AI (β = 0.327; P < 0.001), HDL size (β = −0.326; P < 0.001), WC (β = 0.171; P = 0.006) and glucose (β = 0.119; P = 0.038). Logistic regression analysis demonstrated that changes in Apo B/Apo AI ratio were associated with a 73.5 times higher risk to elevated Lp-PLA2 activity. Conclusions Lp-PLA2 changes in function of obesity, and that it shows important associations with markers of cardiovascular risk, in particular with waist circumference, glucose, HDL size and Apo B/Apo AI ratio. These results suggest that Lp-PLA2 activity can be a cardiovascular biomarker in adolescence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recombinant human group II phospholipase A2 (sPLA2) added to human platelets in the low microg/ml range induced platelet activation, as demonstrated by measurement of platelet aggregation, thromboxane A2 generation and influx of intracellular free Ca2+ concentration and by detection of time-dependent tyrosine phosphorylation of platelet proteins. The presence of Ca2+ at low millimolar concentrations is a prerequisite for the activation of platelets by sPLA2. Mg2+ cannot replace Ca2+. Mg2+, given in addition to the necessary Ca2+, inhibits sPLA2-induced platelet activation. Pre-exposure to sPLA2 completely blocked the aggregating effect of a second dose of sPLA2. Albumin or indomethacin inhibited sPLA2-induced aggregation, similarly to the inhibition of arachidonic acid-induced aggregation. Platelets pre-treated with heparitinase or phosphatidylinositol-specific phospholipase C lost their ability to aggregate in response to sPLA2, although they still responded to other agonists. This suggests that a glycophosphatidylinositol-anchored platelet-membrane heparan sulphate proteoglycan is the binding site for sPLA2 on platelets. Previous reports have stated that sPLA2 is unable to activate platelets. The inhibitory effect of albumin and Mg2+, frequently used in aggregation studies, and the fact that isolated platelets lose their responsiveness to sPLA2 relatively quickly, may explain why the platelet-activating effects of sPLA2 have not been reported earlier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: FTY720 is a potent immunomodulatory prodrug that is converted to its active phosphorylated form by a sphingosine kinase. Here we have studied whether FTY720 mimicked the action of sphingosine-1-phosphate (S1P) and exerted an anti-inflammatory potential in renal mesangial cells. EXPERIMENTAL APPROACH: Prostaglandin E(2) (PGE(2)) was quantified by an enzyme-linked immunosorbent-assay. Secretory phospholipase A(2) (sPLA(2)) protein was detected by Western blot analyses. mRNA expression was determined by Northern blot analysis and sPLA(2)-promoter activity was measured by a luciferase-reporter-gene assay. KEY RESULTS: Stimulation of cells for 24 h with interleukin-1beta (IL-1beta) is known to trigger increased PGE(2) formation which coincides with an induction of the mRNA for group-IIA-sPLA(2) and protein expression. FTY720 dose-dependently suppressed IL-1beta-induced IIA-sPLA(2) protein secretion and activity in the supernatant. This effect is due to a suppression of cytokine-induced sPLA(2) mRNA expression which results from a reduced promoter activity. As a consequence of suppressed sPLA(2) activity, PGE(2) formation is also reduced by FTY720. Mechanistically, the FTY720-suppressed sPLA(2) expression results from an activation of the TGFbeta/Smad signalling cascade since inhibition of the TGFbeta receptor type I by a specific kinase inhibitor reverses the FTY720-mediated decrease of sPLA(2) protein expression and sPLA(2) promoter activity. CONCLUSIONS AND IMPLICATIONS: In summary, our data show that FTY720 was able to mimic the anti-inflammatory activity of TGFbeta and blocked cytokine-triggered sPLA(2) expression and subsequent PGE(2) formation. Thus, FTY720 may exert additional in vivo effects besides the well reported immunomodulation and its anti-inflammatory potential should be considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE: High levels of calcium independent phospholipase A2 (iPLA2) are present in certain regions of the brain, including the cerebral cortex, striatum, and cerebellum (Ong et al. 2005). OBJECTIVES: The present study was carried out to elucidate a possible role of the enzyme in the motor system. METHODS: The selective iPLA2 inhibitor bromoenol lactone (BEL), the nonselective PLA2 inhibitor methyl arachidonyl fluorophosphonate (MAFP), and an antisense oligonucleotide were used to interfere with iPLA2 activity in various components of the motor system. Control animals received injections of carrier (phosphate buffered saline, PBS) at the same locations. The number of vacuous chewing movements (VCM) was counted from 1 to 14 days after injection. RESULTS: Rats that received BEL and high-dose MAFP injections in the striatum, thalamus, and motor cortex, but not the cerebellum, showed significant increase in VCM, compared to those injected with PBS at these locations. BEL-induced VCM were blocked by intramuscular injections of the anticholinergic drug, benztropine. Increased VCM was also observed after intrastriatal injection of antisense oligonucleotide to iPLA2. The latter caused a decrease in striatal iPLA2 levels, confirming a role of decreased enzyme activity in the appearance of VCM. CONCLUSIONS: These results suggest an important role for iPLA2 in the cortex-striatum-thalamus-cortex circuitry. It is postulated that VCM induced by iPLA2 inhibition may be a model of human parkinsonian tremor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endotoxemia from sepsis can injure the gastrointestinal tract through mechanisms that have not been fully elucidated. We have shown that LPS induces an increase in gastric permeability in parallel with the luminal appearance of secretory phospholipase A2 (sPLA2) and its product, lysophosphatidylcholine (lyso-PC). We proposed that sPLA2 acted on the gastric hydrophobic barrier, composed primarily of phosphatidylcholine (PC), to degrade it and produce lyso-PC, an agent that is damaging to the mucosa. In the present study, we have tested whether lyso-PC and/or sPLA2 have direct damaging effects on the hydrophobic barriers of synthetic and mucosal surfaces. Rats were administered LPS (5 mg/kg, i.p.), and gastric contents were collected 5 h later for analysis of sPLA2 and lyso-PC content. Using these measured concentrations, direct effects of sPLA2 and lyso-PC were determined on (a) surface hydrophobicity as detected with an artificial PC surface and with intact gastric mucosa (contact angle analysis) and (b) cell membrane disruption of gastric epithelial cells (AGS). Both lyso-PC and sPLA2 increased significantly in the collected gastric juice of LPS-treated rats. Using similar concentrations to the levels in gastric juice, the contact angle of PC-coated slides declined after incubation with either pancreatic sPLA2 or lyso-PC. Similarly, gastric contact angles seen in control rats were significantly decreased in sPLA2 and lyso-PC-treated rats. In addition, we observed dose-dependent injurious effects of both lyso-PC and sPLA2 in gastric AGS cells. An LPS-induced increase in sPLA2 activity in the gastric lumen and its product, lyso-PC, are capable of directly disrupting the gastric hydrophobic layer and may contribute to gastric barrier disruption and subsequent inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our previous gene expression analysis identified phospholipase A2 group IIA (PLA2G2A) as a potential biomarker of ovarian endometriosis. The aim of this study was to evaluate PLA2G2A mRNA and protein levels in tissue samples (endometriomas and normal endometrium) and in serum and peritoneal fluid of ovarian endometriosis patients and control women. One-hundred and sixteen women were included in this study: the case group included 70 ovarian endometriosis patients, and the control group included 38 healthy women and 8 patients with benign ovarian cysts. We observed 41.6-fold greater PLA2G2A mRNA levels in endometrioma tissue, compared to normal endometrium tissue. Using Western blotting, PLA2G2A was detected in all samples of endometriomas, but not in normal endometrium, and immunohistochemistry showed PLA2G2A-specific staining in epithelial cells of endometrioma paraffin sections. However, there were no significant differences in PLA2G2A levels between cases and controls according to ELISA of peritoneal fluid (6.0 ± 4.4 ng/ml, 6.6 ± 4.3 ng/ml; p = 0.5240) and serum (2.9 ± 2.1 ng/ml, 3.1 ± 2.2 ng/ml; p = 0.7989). Our data indicate that PLA2G2A is implicated in the pathophysiology of ovarian endometriosis, but that it cannot be used as a diagnostic biomarker.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)-induced apoptosis is mediated by caspases, which are cysteine proteases related to interleukin 1β-converting enzyme. We report here that TNF-induced activation of caspases results in the cleavage and activation of cytosolic phospholipase A2 (cPLA2) and that activated cPLA2 contributes to apoptosis. Inhibition of caspases by expression of a cowpox virus-derived inhibitor, CrmA, or by a specific tetrapeptide inhibitor of CPP32/caspase-3, acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO), inhibited TNF-induced activation of cPLA2 and apoptosis. TNF-induced activation of cPLA2 was accompanied by a cleavage of the 100-kDa cPLA2 to a 70-kDa proteolytic fragment. This cleavage was inhibited by Ac-DEVD-CHO in a similar manner as that of poly(ADP)ribose polymerase, a known substrate of CPP32/caspase-3. Interestingly, specific inhibition of cPLA2 enzyme activity by arachidonyl trifluoromethylketone (AACOCF3) partially inhibited TNF-induced apoptosis without inhibition of caspase activity. Thus, our results suggest a novel caspase-dependent activation pathway for cPLA2 during apoptosis and identify cPLA2 as a mediator of TNF-induced cell death acting downstream of caspases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although membrane tubules can be found extending from, and associated with, the Golgi complex of eukaryotic cells, their physiological function has remained unclear. To gain insight into the biological significance of membrane tubules, we have developed methods for selectively preventing their formation. We show here that a broad range of phospholipase A2 (PLA2) antagonists not only arrest membrane tubule–mediated events that occur late in the assembly of the Golgi complex but also perturb its normal steady-state tubulovesicular architecture by inducing a reversible fragmentation into separate “mini-stacks.” In addition, we show that these same compounds prevent the formation of membrane tubules from Golgi stacks in an in vitro reconstitution system. This in vitro assay was further used to demonstrate that the relevant PLA2 activity originates from the cytoplasm. Taken together, these results demonstrate that Golgi membrane tubules, sensitive to potent and selective PLA2 antagonists, mediate both late events in the reassembly of the Golgi complex and the dynamic maintenance of its steady-state architecture. In addition, they implicate a role for cytoplasmic PLA2 enzymes in mediating these membrane trafficking events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attachment of HeLa cells to gelatin induces the release of arachidonic acid (AA), which is essential for cell spreading. HeLa cells spreading in the presence of extracellular Ca2+ released more AA and formed more distinctive lamellipodia and filopodia than cells spreading in the absence of Ca2+. Addition of exogenous AA to cells spreading in the absence of extracellular Ca2+ restored the formation of lamellipodia and filopodia. To investigate the role of cytosolic phospholipase A2 (cPLA2) in regulating the differential release of AA and subsequent formation of lamellipodia and filopodia during HeLa cell adhesion, cPLA2 phosphorylation and translocation from the cytosol to the membrane were evaluated. During HeLa cell attachment and spreading in the presence of Ca2+, all cPLA2 became phosphorylated within 2 min, which is the earliest time cell attachment could be measured. In the absence of extracellular Ca2+, the time for complete cPLA2 phosphorylation was lengthened to <4 min. Maximal translocation of cPLA2 from cytosol to membrane during adhesion of cells to gelatin was similar in the presence or absence of extracellular Ca2+ and remained membrane associated throughout the duration of cell spreading. The amount of total cellular cPLA2 translocated to the membrane in the presence of extracellular Ca2+ went from <20% for unspread cells to >95% for spread cells. In the absence of Ca2+ only 55–65% of the total cPLA2 was translocated to the membrane during cell spreading. The decrease in the amount translocated could account for the comparable decrease in the amount of AA released by cells during spreading without extracellular Ca2+. Although translocation of cPLA2 from cytosol to membrane was Ca2+ dependent, phosphorylation of cPLA2 was attachment dependent and could occur both on the membrane and in the cytosol. To elucidate potential activators of cPLA2, the extracellular signal-related protein kinase 2 (ERK2) and protein kinase C (PKC) were investigated. ERK2 underwent a rapid phosphorylation upon early attachment followed by a dephosphorylation. Both rates were enhanced during cell spreading in the presence of extracellular Ca2+. Treatment of cells with the ERK kinase inhibitor PD98059 completely inhibited the attachment-dependent ERK2 phosphorylation but did not inhibit cell spreading, cPLA2 phosphorylation, translocation, or AA release. Activation of PKC by phorbol ester (12-O-tetradecanoylphorbol-13-acetate) induced and attachment-dependent phosphorylation of both cPLA2 and ERK2 in suspension cells. However, in cells treated with the PKC inhibitor Calphostin C before attachment, ERK2 phosphorylation was inhibited, whereas cPLA2 translocation and phosphorylation remained unaffected. In conclusion, although cPLA2-mediated release of AA during HeLa cell attachment to a gelatin substrate was essential for cell spreading, neither ERK2 nor PKC appeared to be responsible for the attachment-induced cPLA2 phosphorylation and the release of AA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence has been presented both for and against obligate retrograde movement of resident Golgi proteins through the endoplasmic reticulum (ER) during nocodazole-induced Golgi ministack formation. Here, we studied the nocodazole-induced formation of ministacks using phospholipase A2 (PLA2) antagonists, which have been shown previously to inhibit brefeldin A–stimulated Golgi-to-ER retrograde transport. Examination of clone 9 rat hepatocytes by immunofluorescence and immunoelectron microscopy revealed that a subset of PLA2 antagonists prevented nocodazole-induced ministack formation by inhibiting two different trafficking pathways for resident Golgi enzymes; at 25 μM, retrograde Golgi-to-ER transport was inhibited, whereas at 5 μM, Golgi-to-ER trafficking was permitted, but resident Golgi enzymes accumulated in the ER. Moreover, resident Golgi enzymes gradually redistributed from the juxtanuclear Golgi or Golgi ministacks to the ER in cells treated with these PLA2 antagonists alone. Not only was ER-to-Golgi transport of resident Golgi enzymes inhibited in cells treated with these PLA2 antagonists, but transport of the vesicular stomatitis virus G protein out of the ER was also prevented. These results support a model of obligate retrograde recycling of Golgi resident enzymes during nocodazole-induced ministack formation and provide additional evidence that resident Golgi enzymes slowly and constitutively cycle between the Golgi and ER.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to sense orientation relative to gravity requires dense particles, called otoconia, which are localized in the vestibular macular organs. In mammals, otoconia are composed of proteins (otoconins) and calcium carbonate crystals in a calcite lattice. Little is known about the mechanisms that regulate otoconial biosynthesis. To begin to elucidate these mechanisms, we have partially sequenced and cloned the major protein component of murine otoconia, otoconin-90 (OC90). The amino acid sequence identified an orphan chimeric human cDNA. Because of its similarity to secretory phospholipase A2 (sPLA2), this gene was referred to as PLA2-like (PLA2L) and enabled the identification of human Oc90. Partial murine cDNA and genomic clones were isolated and shown to be specifically expressed in the developing mouse otocyst. The mature mouse OC90 is composed of 453 residues and contains two domains homologous to sPLA2. The cloning of Oc90 will allow an examination of the role of this protein in otoconial biosynthesis and in diseases that affect the vestibular system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although nonsteroidal antiinflammatory drugs (NSAIDs) show great promise as therapies for colon cancer, a dispute remains regarding their mechanism of action. NSAIDs are known to inhibit cyclooxygenase (COX) enzymes, which convert arachidonic acid (AA) to prostaglandins (PGs). Therefore, NSAIDs may suppress tumorigenesis by inhibiting PG synthesis. However, various experimental studies have suggested the possibility of PG-independent mechanisms. Notably, disruption of the mouse group IIA secretory phospholipase A2 locus (Pla2g2a), a potential source of AA for COX-2, increases tumor number despite the fact that the mutation has been predicted to decrease PG production. Some authors have attempted to reconcile the results by suggesting that the level of the precursor (AA), not the products (PGs), is the critical factor. To clarify the role of AA in tumorigenesis, we have examined the effect of deleting the group IV cytosolic phospholipase A2 (cPLA2) locus (Pla2g4). We report that ApcMin/+, cPLA2−/− mice show an 83% reduction in tumor number in the small intestine compared with littermates with genotypes ApcMin/+, cPLA2+/− and ApcMin/+, cPLA2+/+. This tumor phenotype parallels that of COX-2 knockout mice, suggesting that cPLA2 is the predominant source of AA for COX-2 in the intestine. The protective effect of cPLA2 deletion is thus most likely attributed to a decrease in the AA supply to COX-2 and a resultant decrease in PG synthesis. The tumorigenic effect of sPLA2 mutations is likely to be through a completely different pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phospholipase A2 (PLA2) was purified about 180,000 times compared with the starting soluble-protein extract from developing elm (Ulmus glabra) seeds. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified fraction showed a single protein band with a mobility that corresponded to 15 kD, from which activity could be recovered. When analyzed by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry, the enzyme had a deduced mass of 13,900 D. A 53-amino acid-long N-terminal sequence was determined and aligned with other sequences, giving 62% identity to the deduced amino acid sequence of some rice (Oryza sativa) expressed sequence tag clones. The purified enzyme had an alkaline pH optimum and required Ca2+ for activity. It was unusually stable with regard to heat, acidity, and organic solvents but was sensitive to disulfide bond-reducing agents. The enzyme is a true PLA2, neither hydrolyzing the sn-1 position of phosphatidylcholine nor having any activity toward lysophosphatidylcholine or diacylglycerol. The biochemical data and amino acid sequence alignments indicate that the enzyme is related to the well-characterized family of animal secretory PLA2s and, to our knowledge, is the first plant enzyme of this type to be described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular levels of free arachidonic acid (AA) are controlled by a deacylation/reacylation cycle whereby the fatty acid is liberated by phospholipases and reincorporated by acyltransferases. We have found that the esterification of AA into membrane phospholipids is a Ca(2+)-independent process and that it is blocked up to 60-70% by a bromoenollactone (BEL) that is a selective inhibitor of a newly discovered Ca(2+)-independent phospholipase A2 (PLA2) in macrophages. The observed inhibition correlates with a decreased steady-state level of lysophospholipids as well as with the inhibition of the Ca(2+)-independent PLA2 activity in these cells. This inhibition is specific for the Ca(2+)-independent PLA2 in that neither group IV PLA2, group II PLA2, arachidonoyl-CoA synthetase, lysophospholipid:arachidonoyl-CoA acyltransferase, nor CoA-independent transacylase is affected by treatment with BEL. Moreover, two BEL analogs that are not inhibitors of the Ca(2+)-independent PLA2--namely a bromomethyl ketone and methyl-BEL--do not inhibit AA incorporation into phospholipids. Esterification of palmitic acid is only slightly affected by BEL, indicating that de novo synthetic pathways are not inhibited by BEL. Collectively, the data suggest that the Ca(2+)-independent PLA2 in P388D1 macrophages plays a major role in regulating the incorporation of AA into membrane phospholipids by providing the lysophospholipid acceptor employed in the acylation reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mouse bone marrow-derived mast cells (BMMCs) developed with interleukin 3 (IL-3) can be stimulated by c-kit ligand (KL) and accessory cytokines over a period of hours for direct delayed prostaglandin (PG) generation or over a period of days to prime for augmented IgE-dependent PG and leukotriene (LT) production, as previously reported. We now report that IL-4 is counterregulatory for each of these distinct KL-dependent responses. BMMCs cultured for 4 days with KL + IL-3 or with KL + IL-10 produced 5- to 7-fold more PGD2 and approximately 2-fold more LTC4 in response to IgE-dependent activation than BMMCs maintained in IL-3 alone. IL-4 inhibited the priming for increased IgE-dependent PGD2 and LTC4 production to the level obtained by activation of BMMCs maintained in IL-3 alone with an IC50 of approximately 0.2 ng/ml. IL-4 inhibited the KL-induced increase in expression of cytosolic phospholipase A2 (cPLA2) but had no effect on the incremental expression of PG endoperoxide synthase 1 (PGHS-1) and hematopoietic PGD2 synthase or on the continued baseline expression of 5-lipoxygenase, 5-lipoxygenase activating protein, and LTC4 synthase. BMMCs stimulated by KL + IL-10 for 10 h exhibited a delayed phase of PGD2 generation, which was dependent on de novo induction of PGHS-2. IL-4 inhibited the induction of PGHS-2 expression and the accompanying cytokine-initiated delayed PGD2 generation with an IC50 of approximately 6 ng/ml. IL-4 had no effect on the expression of PGHS-2 and the production of PGD2 elicited by addition of IL-1 beta to the combination of KL + IL-10. IL-4 had no effect on the immediate phase of eicosanoid synthesis elicited by KL alone or by IgE and antigen in BMMCs maintained in IL-3. Thus, the counterregulatory action of IL-4 on eicosanoid generation is highly selective for the induced incremental expression of cPLA2 and the de novo expression of PGHS-2, thereby attenuating time-dependent cytokine-regulated responses to stimulation via Fc epsilon receptor I and stimulation via c-kit, respectively.