988 resultados para phase-stabilized


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A solid state galvanic cell incorporating yttria-stabilized zirconia electrolyte and ruthenium(IV) oxide electrodes has been used to measure the equilibrium chemical potential of oxygen corresponding to the decomposition of CuCrO4 in the range 590–760 K. For the reaction CuO(tenorite) + CuCr2O4(spinel) + 1.5O2(g)→2CuCrO4(orth), ΔGXXX = −183540 + 249.6T(±900) J mol−1. The decomposition temperature of CuCrO4 in pure oxygen at a pressure of 1.01 × 105 Pa is 735(±1) K. By combining the results obtained in this study with data on the Gibbs energy of formation of CuCr2O4 and CuCrO2 reported earlier, the standard Gibbs energy of formation of CuCrO4 and the phase relations in the system Cu-Cr-O at temperatures below 735 K have been deduced. Electron microscopic studies have indicated that the decomposition of CuCrO4 to CuCr2O4 is topotactic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase relations in the pseudoternary system NiO-CaO-SiO2 at 1373 K are established. The coexisting phases are identified by X-ray diffraction and energy-dispersive X-ray analysis of equilibrated samples. There is only one quaternary oxide CaNiSi2O6 with clinopyroxene structure. The Gibbs energy of formation of CaNiSi2O6 is measured using a solid state galvanic cell incorporating stabilized zirconia as the solid electrolyte in the temperature range of 1000 to 1400 K:Pt, Ni + SiO2 + CaSiO3 + CaNiSi2O6 \ (Y2O3)ZrO2 \ Ni + NiO, Pt From the electromotive force (emf) of the cell, the Gibbs energy of formation of CaNiSi2O6 from NiO, SiO2, and CaSiO3 is obtained. To derive the Gibbs energy of formation of the quaternary oxide from component binary oxides, the free energy of formation of CaSiO, is determined separately using a solid state cell based on single crystal CaF2 as the electrolyte: Pt, O-2, CaO + CaF2 \ CaF2 \ CaSiO3 + SiO2 + CaF2, O-2, Pt The results can be expressed by the following equations: NiO (r.s) + CaO (r.s) + 2SiO(2) (qz) --> CaNiSi2O6 (pyr) Delta G degrees = -115,700 + 10.63T (+/-100) J mol(-1) CaO (r.s) + SiO2 (qz) --> CaSiO3 (wol) Delta G degrees = -90,030 -0.61T (+/-60) J mol(-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An isothermal section of the phase diagram for the system Nd-Pd-O at 1350 K has been established by equilibration of samples representing 13 different compositions and phase identification after quenching by optical and scanning electron microscopy, x-ray diffraction, and energy dispersive analysis of x-rays. The binary oxides PdO and NdO were not stable at 1350 K. Two ternary oxides Nd4PdO7 and Nd2Pd2O5 were identified. Solid and liquid alloys, as well as the intermetallics NdPd3 and NdPd5, were found to be in equilibrium with Nd2O3. Based on the phase relations, three solidstate cells were designed to measure the Gibbs energies of formation of PdO and the two ternary oxides. An advanced version of the solid-state cell incorporating a buffer electrode was used for high-temperature thermodynamic measurements. The function of the buffer electrode, placed between reference and working electrodes, was to absorb the electrochemical flux of the mobile species through the solid electrolyte caused by trace electronic conductivity. The buffer electrode prevented polarization of the measuring electrode and ensured accurate data. Yttria-stabilized zirconia was used as the solid electrolyte and pure oxygen gas at a pressure of 0.1 MP a as the reference electrode. Electromotive force measurements, conducted from 950 to 1425 K, indicated the presence of a third ternary oxide Nd2PdO4, stable below 1135 (±10) K. Additional cells were designed to study this compound. The standard Gibbs energy of formation of PdO (†f G 0) was measured from 775 to 1125 Kusing two separate cell designs against the primary reference standard for oxygen chemical potential. Based on the thermodynamic information, chemical potential diagrams for the system Nd-Pd-O were also developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An isothermal section of the phase diagram for the system Cu-Rh-O at 1273 K has been established by equilibration of samples representing eighteen different compositions, and phase identification after quenching by optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive analysis of X-rays (EDX). In addition to the binary oxides Cu2O, CuO, and Rh2O3, two ternary oxides CuRhO2 and CuRh2O4 were identified. Both the ternary oxides were in equilibrium with metallic Rh. There was no evidence of the oxide Cu2Rh2O5 reported in the literature. Solid alloys were found to be in equilibrium with Cu2O. Based on the phase relations, two solid-state cells were designed to measure the Gibbs energies of formation of the two ternary oxides. Yttria-stabilized zirconia was used as the solid electrolyte, and an equimolar mixture of Rh+Rh2O3 as the reference electrode. The reference electrode was selected to generate a small electromotive force (emf), and thus minimize polarization of the three-phase electrode. When the driving force for oxygen transport through the solid electrolyte is small, electrochemical flux of oxygen from the high oxygen potential electrode to the low potential electrode is negligible. The measurements were conducted in the temperature range from 900 to 1300 K. The thermodynamic data can be represented by the following equations: {fx741-1} where Δf(ox) G o is the standard Gibbs energy of formation of the interoxide compounds from their component binary oxides. Based on the thermodynamic information, chemical potential diagrams for the system Cu-Rh-O were developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase relations in the system Cu-Eu-O have been determined by equilibrating samples of different average composition at 1200 K and by phase analysis after quenching using optical microscopy (OM), x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray (EDX). The equilibration experiments were conducted in evacuated ampoules and under flowing inert gas and pure oxygen. The Cu-Eu alloys were found to be in equilibrium with EuO. The higher oxides of europium, Eu3O4 and Eu2O3, coexist with metallic copper. Two ternary oxides CuEu2O4 and CuEuO2 were found to be stable. The ternary oxide CuEuO2, with copper in the monovalent state, can coexist with Cu, Cu2O, Eu2O3 and CuEu2O4 in different phase fields. The compound CuEu2O4 can be in equilibrium with Cu2O, CuO, CuEuO2, Eu2O3, and O2 gas under different conditions at 1200 K. Thermodynamic properties of the ternary oxides were determined using three solid-state cells based on yttria-stabilized zirconia as the electrolyte in the temperature range from 875 to 1250 K. The cells essentially measure the oxygen chemical potential in the three-phase fields: Cu+Eu2O3+CuEuO2, Cu2O+CuEuO2+CuEu2O4, and Eu2O3+CuEuO2+CuEu2O4. The thermodynamic properties of the ternary oxides can be represented by the equations: $\begin{gathered} {\raise0.5ex\hbox{$Couldn't find \end for begin{gathered} Thermogravimetric analysis (TGA) studies in Ar+O2 mixtures confirmed the results from emf measurements. An oxygen potential diagram for the system Cu-Eu-O at 1200 K was evaluated from the results of this study and information available in the literature on the binary phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

he standard Gibbs energy of formation of CaCu3Ti4O12 (CCTO) from CaTiO3, CuO and TiO2 has been determined as a function of temperature from 925 to 1350 K using a solid-state electrochemical cell with yttria-stabilized zirconia as the solid electrolyte. Combining this result with information in the literature on CaTiO3, the standard Gibbs energy of formation of CCTO from its component binary oxides, CaO, CuO and TiO2, has been obtained: View the MathML source (CaCu3Ti4O12)/J mol−1 (±600) = −125231 + 6.57 (T/K). The oxygen chemical potential corresponding to the reduction of CCTO to CaTiO3, TiO2 and Cu2O has been calculated from the electrochemical measurements as a function of temperature and compared on an Ellingham diagram with those for the reduction of CuO to Cu2O and Cu2O to Cu. The oxygen partial pressures corresponding to the reduction reactions at any chosen temperature can be read using the nomograms provided on either side of the diagram. The effect of the oxygen partial pressure on phase relations in the pseudo-ternary system CaO–CuO/Cu2O–TiO2 at 1273 K has been evaluated. The phase diagrams allow identification of secondary phases that may form during the synthesis of the CCTO under equilibrium conditions. The secondary phases may have a significant effect on the extrinsic component of the colossal dielectric response of CCTO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An isothermal section of the system Al2O3-CaO-CoO at 1500 K has been established by equilibrating 22 samples of different compositions at high temperature and phase identification by optical and scanning electron microscopy, X-ray diffraction, and energy dispersive spectroscopy after quenching to room temperature. Only one quaternary oxide, Ca3CoAl4O10, was identified inside the ternary triangle. Based on the phase relations, a solid-state electrochemical cell was designed to measure the Gibbs energy of formation of Ca3CoAl4O10 in the temperature range from 1150 to 1500 K. Calcia-stabilized zirconia was used as the solid electrolyte and a mixture of Co + CoO as the reference electrode. The cell can be represented as: ( - )\textPt,\textCaAl 2 \textO 4 + \textCa 1 2 \textAl 1 4 \textO 3 3 + \textCa 3 \textCoAl 4 \textO 10 + \textCo//(CaO)ZrO 2 \text// \textCoO + \textCo,\text Pt ( + ). (−)PtCaAl2O4+Ca12Al14O33+Ca3CoAl4O10+Co//(CaO)ZrO2//CoO+Co Pt (+) From the emf of the cell, the standard Gibbs energy change for the Ca3CoAl4O10 formation reaction, CoO + 3/5CaAl2O4 + 1/5Ca12Al14O33 → Ca3CoAl4O10, is obtained as a function of temperature: \Updelta Gr\texto Unknown control sequence '\Updelta'/J mol−1 (±50) = −2673 + 0.289 (T/K). The standard Gibbs energy of formation of Ca3CoAl4O10 from its component binary oxides, Al2O3, CaO, and CoO is derived as a function of temperature. The standard entropy and enthalpy of formation of Ca3CoAl4O10 at 298.15 K are evaluated. Chemical potential diagrams for the system Al2O3-CaO-CoO at 1500 K are presented based on the results of this study and auxiliary information from the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pure stoichiometric MgRh(2)O(4) could not be prepared by solid state reaction from an equimolar mixture of MgO and Rh(2)O(3) in air. The spinel phase formed always contained excess of Mg and traces of Rh or Rh(2)O(3). The spinel phase can be considered as a solid solution of Mg(2)RhO(4) in MgRh(2)O(4). The compositions of the spinel solid solution in equilibrium with different phases in the ternary system Mg-Rh-O were determined by electron probe microanalysis. The oxygen potential established by the equilibrium between Rh + MgO + Mg(1+x)Rh(2-x)O(4) was measured as a function of temperature using a solid-state cell incorporating yttria-stabilized zirconia as an electrolyte and pure oxygen at 0.1 MPa as the reference electrode. To avoid polarization of the working electrode during the measurements, an improved design of the cell with a buffer electrode was used. The standard Gibbs energies of formation of MgRh(2)O(4) and Mg(2)RhO(4) were deduced from the measured electromotive force (e.m.f.) by invoking a model for the spinel solid solution. The parameters of the model were optimized using the measured composition of the spinel solid solution in different phase fields and imposed oxygen partial pressures. The results can be summarized by the equations: MgO + beta -Rh(2)O(3) -> MgRh(2)O(4); Delta G degrees (+ 1010)/J mol(-1) = -32239 + 7.534T; 2MgO + RhO(2) -> Mg(2)RhO(4); Delta G degrees(+/- 1270)/J mol(-1) = 36427 -4.163T; Delta G(M)/J mol(-1) = 2RT(xInx + (1-x)In(1-x)) + 4650x(1-x), where Delta G degrees is the standard Gibbs free energy change for the reaction and G(M) is the free energy of mixing of the spinel solid solution Mg(1+x)Rh(2-x)O(4). (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neutral half-sandwich organometallic ruthenium(II) complexes of the type (?6-cymene)RuCl2(L)] (H1H10), where L represents a heterocyclic ligand, have been synthesized and characterized spectroscopically. The structures of five complexes were also established by single-crystal X-ray diffraction confirming a piano-stool geometry with ?6 coordination of the arene ligand. Hydrogen bonding between the N?H group of the heterocycle and a chlorine atom attached to Ru stabilizes the metalligand interaction. Complexes coordinated to a mercaptobenzothiazole framework (H1) or mercaptobenzoxazole (H6) showed high cytotoxicity against several cancer cells but not against normal cells. In vitro studies have shown that the inhibition of cancer cell growth involves primarily G1-phase arrest as well as the generation of reactive oxygen species (ROS). The complexes are found to bind DNA in a non-intercalative fashion and cause unwinding of plasmid DNA in a cell-free medium. Surprisingly, the cytotoxic complexes H1 and H6 differ in their interaction with DNA, as observed by biophysical studies, they either cause a biphasic melting of the DNA or the inhibition of topoisomerase IIa activity, respectively. Substitution of the aromatic ring of the heterocycle or adding a second hydrogen-bond donor on the heterocycle reduces the cytotoxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a technique to measure the absolute frequencies of optical transitions by using an evacuated Rb-stabilized ring-cavity resonator as a transfer cavity. The absolute frequency of the Rb D-2 line (at 780 nm) used to stabilize the cavity is known and allows us to determine the absolute value of the unknown frequency. We study wavelength-dependent errors due to dispersion at the cavity mirrors by measuring the frequency of the same transition in the Cs D-2 line (at 852 nm) at three cavity lengths. The spread in the values shows that dispersion errors are below 30 kHz, corresponding to a relative precision of 10(-10). We give an explanation for reduced dispersion errors in the ring-cavity geometry by calculating errors due to the lateral shift and the phase shift at the mirrors, and show that they are roughly equal but occur with opposite signs. We have earlier shown that diffraction errors (due to Guoy phase) are negligible in the ring-cavity geometry compared to a linear cavity; the reduced dispersion error is another advantage. Our values are consistent with measurements of the same transition using the more expensive frequency-comb technique. Our simpler method is ideally suited for measuring hyperfine structure, fine structure, and isotope shifts, up to several hundreds of gigahertz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermodynamic properties of the HoRhO3 were determined in the temperature range from 900 to 1300 K by using a solid-state electrochemical cell incorporating calcia-stabilized zirconia as the electrolyte. The standard Gibbs free energy of formation of orthorhombic perovskite HoRhO3, from Ho2O3 with C-rare earth structure and Rh2O3 with orthorhombic structure, can be expressed by the equation; Delta G(f)degrees((ox)) (+/- 78)/(J/mol) = -50535 + 3.85(T/K) Using the thermodynamic data of HoRhO3 and auxiliary data for binary oxides from the literature, the phase relations in the Ho-Rh-O system were computed at 1273 K. Thermodynamic data for intermetallic phases in the binary Ho-Rh were estimated from experimental enthalpy of formation for three compositions from the literature and Miedema's model, consistent with the phase diagram. The oxygen potential-composition diagram and three-dimensional chemical potential diagram at 1273 K, and temperature-composition diagrams at constant oxygen partial pressures were computed for the system Ho-Rh-O. The decomposition temperature of HoRhO3 is 1717(+/- 2) K in pure O-2 and 1610(+/- 2) K in air at a total pressure p(o) = 0.1 MPa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermodynamic properties of Dysprosium rhodite (DyRhO3) are measured in the temperature range from 900 to 1,300 K using a solid-state electrochemical cell incorporating yttria-stabilized zirconia as the electrolyte. The standard Gibbs free energy of formation of DyRhO3 with O-type perovskite structure from its components binary oxides, Dysprosia with C-rare earth structure and beta-Rh2O3 with orthorhombic structure, can be represented by the equation: Delta G(f(OX))(O) (+/- 182)/J mol(-1) = -52710+3.821(T/K). By using the thermodynamic data for DyRhO3 from experiment and auxiliary data for other phases from the literature, the phase relations in the system Dy-Rh-O are computed. Thermodynamic data for intermetallic phases in the binary system Dy-Rh, required for constructing the chemical potential diagrams, are evaluated using calorimetric data available in the literature for three intermetallics and Miedema's model, consistent with the phase diagram. The results are presented in the form of Gibbs triangle, oxygen potential-composition diagram, and three-dimensional chemical potential diagram at 1,273 K. Temperature-composition diagrams at constant oxygen partial pressures are also developed. The decomposition temperature of DyRhO3 is 1,732 (+/- 2.5) K in pure oxygen and 1,624 (+/- 2.5) K and in air at standard pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermodynamic properties of GdRhO3 are investigated in the temperature range from 900 to 1300 K by employing a solid-state electrochemical cell, incorporating calcia-stabilized zirconia as the electrolyte. The standard Gibbs free energy of formation of GdRhO3 from component binary oxide Gd2O3 with C-rare earth structure and Rh2O3 with orthorhombic structure can be expressed as; Delta G(f(ox))(o)(+/- 60)/J mol(-1) = -56603 + 3.78(T/K) Based on the thermodynamic information on GdRhO3 from experiment and auxiliary data for binary oxides from the literature and estimated properties of Gd-Rh alloys, phase relations are computed for the system Gd-Rh-O at 1273 K. Gibbs free energies for intermetallic phases in the binary Gd-Rh are evaluated using calorimetric data available in the literature for two compositions and Miedema's model, consistent with the binary phase diagram. Isothermal section of the ternary phase diagram, oxygen potential-composition diagram and a 3-D chemical potential diagram for the system Gd-Rh-O at 1273 K are developed. Phase relations in the ternary Gd-Rh-O are also computed as a function of temperature at constant oxygen partial pressures. The ternary oxide, GdRhO3 decomposes to Gd2O3 with B-rare earth structure, metallic Rh and O-2 at 1759(+/- 2) K in pure O-2 and 1649(+/- 2) K in air at a total pressure P-0 -0.1 MPa. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase equilibrium experiments indicate that NdRhO3 is the only ternary oxide in the system Nd-Rh-O at 1273 K; it has orthorhombically-distorted perovskite structure. By employing a solid-state electrochemical cell incorporating calcia-stabilized zirconia as the electrolyte, thermodynamic properties of NdRhO3 are determined. The standard Gibbs energy of formation of NdRhO3 from its component binary oxides in the temperature ranges from 900 to 1300 K can be expressed as: 1/2Rh(2)O(3) (ortho)+1/2Nd(2)O(3)(hex)=NdRhO3(ortho), Delta(f(o,x))G(0)/J mol(-1)( +/- 197) = - 66256+5.64 (T/K). The decomposition temperature of NdRhO3 computed from extrapolated thermodynamic data is 1803 (+/- 4) K in pure oxygen and 1692 (+/- 4) K in air at standard pressure. Oxygen partial pressure-composition diagram and three-dimensional chemical potential diagram at 1273 K are developed from thermodynamic data obtained in this study and auxiliary information from the literature. Equilibrium temperature-composition phase diagrams at constant oxygen partial pressures are also constructed. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nature of the pre-morphotropic phase boundary (MPB) cubic-like state in the lead-free piezoelectric ceramics (1-x)Na1/2Bi1/2TiO3-(x)BaTiO3 at x similar to 0.06 has been examined in detail by electric field and temperature dependent neutron diffraction, x-ray diffraction, dielectric and ferroelectric characterization. The superlattice reflections in the neutron diffraction patterns cannot be explained with the tetragonal P4bm and the rhombohedral (R3c) phase coexistence model. The cubic like state is rather a result of long ranged modulated complex octahedral tilt. This modulated structure exhibits anomalously large dielectric dispersion. The modulated structure transforms to a MPB state on poling. The field-stabilized MPB state is destroyed and the modulated structure is restored on heating the poled specimen above the Vogel-Fulcher freezing temperature. The results show the predominant role of competing octahedral tilts in determining the nature of structural and polar states in Na1/2Bi1/2TiO3-based ferroelectrics. (C) 2013 AIP Publishing LLC.