123 resultados para peroxynitrite
Resumo:
Previous studies have showed that SIN-1, a nitric oxide (NO) donor, injected into the dorsolateral column of the periaqueductal gray (dlPAG) induces flight reactions. This drug, however, can also produce peroxynitrite, which may interfere in this effect. In addition, it is also unknown if this effect is mediated by local activation of soluble guanylate cyclase (sGC). The aims of this study, therefore, were (1) to investigate if NOC-9 (6-(2-Hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-hexanamine), a NO donor that does not produce peroxynitrite, would produce flight reactions after intra-dlPAG administration similar to those induced by SIN-1; (2) to verify if these responses could be prevented by local injection of a selective guanylate cyclase inhibitor (ODQ). Male Wistar rats (n = 5-12) with cannulae aimed at the dlPAG received injections of TRIS (pH 10.0, 0.5 mu l), NOC-9 (75 and 150 nmol), saline or SIN-1 (200 nmol) and were placed in an open arena for 10 min. In a subsequent experiment animals (n = 7-8) were pretreated with ODQ (1 nmol/0.5 mu l) before receiving NOC-9 150 nmol. NOC-9 induced a significant dose-dependent increase in flight reactions in the first minute after injection (% of animals displaying flight: vehicle = 0%, NOC 75 = 67%. NOC 150 = 75%). SIN-1 had a similar effect (100% of animals showing flight) but the effects lasted longer (10 min) than those of NOC-9. The effect of NOC-9 (150 nmol) was prevented by pretreatment with ODQ (% of animals displaying flight: vehicle + NOC 150 = 71 %, ODQ + NOC 150 = 37%). The results suggest that NO donors injected into the dlPAG induce defensive responses that are not mediated by secondary peroxynitrite production. Moreover, they also indicate that these defensive responses depend on activation of local sGC. The data strengthen the proposal that NO can modulate defensive reactions in the dlPAG. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This study describes increased sarcolemmal permeability and myofilamentar damage that occur together with lipid peroxidation and protein nitration in the myocardium in severe sepsis induced by cecal ligation and puncture. Male C57BL/6 mice were submitted to moderate and severe septic injury and sham operation. Using light and laser confocal microscopy, diffuse foci of myocytolysis associated with focal disruption of the actin/myosin contractile apparatus could be seen in hearts with severe septic injury. The myocardial expressions of the sarcomeric proteins myosin and actin were downregulated by both severe and moderate injuries. The detection of albumin staining in the cytoplasm of myocytes to evaluate sarcolemmal permeability provided evidence of severe and mild injury of the plasma membrane in hearts with severe and moderate septic injury, respectively. The administration of a superoxide scavenger caused marked reduction of sarcolemmal permeability, indicating the involvement of free radicals in its genesis. On electron microscopy, these changes were seen to correspond to spread blocks of a few myocytes with fragmentation and dissolution of myofibrils, intracellular edema, and, occasionally, rupture of the sarcolemma. In addition, oxidative damage to lipids, using anti-4-hydroxynonenal, an indicator of oxidative stress and disruption of plasma membrane lipids, and to proteins, using antinitrotyrosine, a stable biomarker of peroxynitrite-mediated protein nitration, was demonstrated. These findings make plausible the hypothesis that increased sarcolemmal permeability might be a primary event in myocardial injury in severe sepsis possibly due to oxidative damage to lipids and proteins that could precede phenotypic changes that characterize a septic cardiomyopathy.
Resumo:
The vascular remodeling associated with hypertension involves oxidative stress and enhanced matrix metalloproteinases (MMPs) expression/activity, especially MMP-2. While previous work showed that lercanidipine, a third-generation dihydropyridine calcium channel blocker (CCB), attenuated the oxidative stress and increased MMP-2 expression/activity in two-kidney, one-clip (2K1C) hypertension, no previous study has examined whether first- or second-generation dihydropyridines produce similar effects. We compared the effects of nifedipine, nimodipine, and amlodipine on 2K1C hypertension-induced changes in systolic blood pressure (SBP), vascular remodeling, oxidative stress, and MMPs levels/activity. Sham-operated and 2K1C rats were treated with water, nifedipine 10 mg/kg/day, nimodipine 15 mg/kg/day, or amlodipine 10 mg/kg/day by gavage, starting 3 weeks after hypertension was induced. SBP was monitored weekly. After 6 weeks of treatment, quantitative morphometry of structural changes in the aortic wall was studied in hematoxylin/eosin-stained sections. Aortic and systemic reactive oxygen species levels were measured by using dihydroethidine and thiobarbituric acid-reactive substances (TBARs), respectively. Aortic MMP-2 levels and activity were determined by gelatin zymography, in situ zymography, and immunofluorescence. Nifedipine, nimodipine, or amlodipine attenuated the increases in SBP in hypertensive rats by approximately 17% (P<0.05) and prevented vascular hypertrophy (P<0.05). These CCBs blunted 2K1C-induced increases in vascular oxidative stress and plasma TBARs concentrations (P<0.05). All dihydropyridines attenuated the increases in aortic MMP-2 levels and activity associated with 2K1C hypertension. These findings suggest lack of superiority of one particular dihydropyridine, at least with respect to antioxidant effects, MMPs downregulation, and inhibition of vascular remodeling in hypertension.
Resumo:
Selective superoxide dismutase (SOD) mimetics are potentially useful in pathological conditions in which there is an overproduction of the superoxide anion O-2.(-). These pathological conditions include inflammation, ischemia/reperfusion, shock, various cardiovascular disorders, amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. A major step forward in this field was the development of small-molecule selective SOD mimetics that penetrate cell membranes, These selective SOD mimetics catalytically remove O-2.(-) without interfering with nitric oxide (NO), peroxynitrite (ONOO-) or other radicals such as hydroxyl radical or hydrogen peroxide (H2O2). These selective SOD mimetics (SC-52608, SC-55858, M-40403 and M-40401) have been shown to have benefits in animal models of inflammation, ischemia/reperfusion, shock, thrombosis and diabetes. The next challenge with selective SOD mimetics is to develop therapeutic potential into therapeutic agents.
Resumo:
As sequelas fisiopatológicas do stress oxidativo são difíceis de quantificar. Apesar dos obstáculos, a relevância médica do stress oxidativo tem vindo a ser cada vez mais reconhecida, sendo hoje em dia encarado como um componente chave de virtualmente todas as doenças. A disfunção erétil (DE) surge neste contexto como uma espécie de barómetro da função endotelial e do dano oxidativo. A quantificação de biomarcadores de stress oxidativo poderá apresentar um enorme impacto na avaliação de pacientes com DE. O rácio glutationa reduzida/oxidada (GSH/GSSG) e a nitrotirosina (3-NT) têm vindo a demonstrar relevância clínica. A consideração de polimorfismos genéticos constitui ainda uma abordagem promissora na avaliação destas relações no futuro. Um método altamente sensível de cromatografia líquida de alta performance (HPLC) foi desenvolvido para a determinação de 3-NT em plasma humano. As concentrações de 3-NT medidos em indivíduos com DE foram 6,6±2,1μM (média±S.D., n = 46). A medição da concentração plasmática de 3-NT poderá revelar-se útil como marcador de dano oxidativo dependente do óxido nítrico (NO). O nível de stress oxidativo pode também ser quantificado através da medição do decréscimo do rácio GSH/GSSG, que tem mostrado alterações numa miríade de patologias, como a DE e a diabetes mellitus. O método proposto para a quantificação do rácio GSH/GSSG em HPLC apresenta a vantagem de avaliação concomitante dos dois parâmetros em apenas uma corrida. O valor do rácio GSH/GSSG obtido a partir de sangue de indivíduos com DE foi 11,9±9,8 (média±S.D., n = 49). Os resultados estatísticos revelaram diferenças significativas (p<0,001) entre ambos a concentração plasmática de 3-NT e o rácio GSH/GSSG de sangue de indivíduos com DE e as respetivas medições em indivíduos saudáveis. Observaram-se ainda diferenças estatisticamente significativas (p≈0,027) entre o rácio GSH/GSSG do sangue de pacientes apenas com diagnóstico de DE e a medição respetiva em indivíduos com DE e comorbilidades cardiovasculares. Estes resultados enfatizam o papel do dano oxidativo na biopatologia da DE, elucidado com o auxílio destas duas metodologias, que poderão ter um amplo campo de aplicação no futuro, dado que se mostraram simples, não dispendiosas e rápidas, podendo eventualmente adequar-se a estudos de rastreio em larga escala.
Resumo:
As espécies reativas de oxigénio (ROS) estão envolvidas no desenvolvimento de dor neuropática. No entanto, a aplicação clínica de moléculas antioxidantes no tratamento desta patologia tem demonstrado pouca eficácia. A inibição da NADPH oxidase (NOX), uma das principais fontes de ROS, poderá ser uma boa estratégia terapêutica. O nosso grupo verificou que a apocinina (inibidor da NOX) melhora parcialmente os sintomas de dor neuropática e a disfunção redox espinhal no modelo SNI (spared nerve injury). De forma a melhorar este efeito terapêutico, o presente estudo insere-se num projeto maior, que visa identificar as isoformas da NOX envolvidas na fisiopatologia da doença e avaliar o efeito da administração de inibidores específicos para essas isoformas. Assim, propusemo-nos a avaliar a disfunção redox espinhal em fases precoces dador neuropática periférica induzida pelo modelo SNI no Rato, relacionando-a com os comportamentos de dor demonstrados pelos animais. Foram constituídos três grupos experimentais: SNI, sham e naïve, com subgrupos testados e sacrificados aos dias 1, 3, 7 e 14 após a cirurgia. Avaliou-se a sensibilidade mecânica (vonFrey e pinprick) e ao frio (acetona) dos animais, sacrificaram-se e recolheram-se as medulas espinhais para análise imunohistoquímica, com marcadores de dano oxidativo no DNA e de dano nitrosativo. Ao contrário dos animais sham, que demonstraram um comportamento muito próximo dos naïve, os animais SNI desenvolveram alodínia mecânica e ao frio e hiperalgesia mecânica na pata ipsilateral. No entanto, o dano oxidativo no corno dorsal ipsilateral da medula espinhal apresentou-se idêntico nos grupos SNI e sham ao longo dos 14 dias de estudo, não havendo também diferenças entre os cornos ipsi e contralateral à lesão nervosa. É possível que o desenvolvimento de dor neuropática nos animais SNI não se faça acompanhar de disfunção redox espinhal, pelo menos até aos 14 dias pós indução. O facto de a lesão nervosa no modelo SNI se localizar numa porção distal do ciático, ao contrário de outros modelos em que o stresse oxidativo espinhal foi já descrito, poderia explicar essas diferenças. Em todo o caso, considerando que os resultados comportamentais obtidos indicam que as cirurgias SNI e sham causam diferentes níveis de sensibilização nos animais, parece-nos fulcral prolongar os tempos de neuropatia, e executar uma avaliação do estado redox com outros marcadores, de forma a elucidar se, de facto, existem ROS envolvidas nesta sensibilização e, em caso positivo, poder identificar essas espécies, bem como as suas fontes.
Resumo:
BACKGROUND: Nitrosative stress takes place in endothelial cells (EC) during corneal acute graft rejection. The purpose of this study was to evaluate the potential role of peroxynitrite on corneal EC death. METHODS: The effect of peroxynitrite was evaluated in vivo. Fifty, 250, and 500 microM in 1.5 microL of the natural or denatured peroxynitrite in 50 microM NaOH, 50 microM NaOH alone, or balanced salt solution were injected into the anterior chamber of rat eyes (n=3/group). Corneal toxic signs after injection were assessed by slit-lamp, in vivo confocal imaging, pachymetry, and EC count. The effect of peroxynitrite was also evaluated on nitrotyrosine and leucocyte elastase inhibitor/LDNase II immunohistochemistry. Human corneas were incubated with peroxynitrite and the effect on EC viability was evaluated. A specific inducible nitric oxide synthase inhibitor (iNOS) was administered systemically in rats undergoing allogeneic corneal graft rejection and the effect on EC was evaluated by EC count. RESULTS: Rat eyes receiving as little as 50 microM peroxynitrite showed a specific dose-dependent toxicity on EC. We observed an intense nitrotyrosine staining of human and rat EC exposed to peroxynitrite associated with leucocyte elastase inhibitor nuclear translocation, a noncaspase dependent apoptosis reaction. Specific inhibition of iNOS generation prevented EC death and enhanced EC survival of the grafted corneas. However, inhibition of iNOS did not have a significant influence on the incidence of graft rejection. CONCLUSION: Nitrosative stress during acute corneal graft rejection in rat eyes induces a noncaspase dependent apoptotic death in EC. Inhibition of nitric oxide production during the corneal graft rejection has protective effects on the corneal EC survival.
Resumo:
BACKGROUND: Myocardial contractile failure in septic shock may develop following direct interactions, within the heart itself, between molecular motifs released by pathogens and their specific receptors, notably those belonging to the toll-like receptor (TLR) family. Here, we determined the ability of bacterial flagellin, the ligand of mammalian TLR5, to trigger myocardial inflammation and contractile dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: TLR5 expression was determined in H9c2 cardiac myoblasts, in primary rat cardiomyocytes, and in whole heart extracts from rodents and humans. The ability of flagellin to activate pro-inflammatory signaling pathways (NF-kappaB and MAP kinases) and the expression of inflammatory cytokines was investigated in H9c2 cells, and, in part, in primary cardiomyocytes, as well as in the mouse myocardium in vivo. The influence of flagellin on left ventricular function was evaluated in mice by a conductance pressure-volume catheter. Cardiomyocytes and intact myocardium disclosed significant TLR5 expression. In vitro, flagellin activated NF-kappaB, MAP kinases, and the transcription of inflammatory genes. In vivo, flagellin induced cardiac activation of NF-kappaB, expression of inflammatory cytokines (TNF alpha, IL-1 beta, IL-6, MIP-2 and MCP-1), and provoked a state of reversible myocardial dysfunction, characterized by cardiac dilation, reduced ejection fraction, and decreased end-systolic elastance. CONCLUSION/SIGNIFICANCE: These results are the first to indicate that flagellin has the ability to trigger cardiac innate immune responses and to acutely depress myocardial contractility.
Resumo:
Introduction: Systemic inflammation in sepsis is initiated by interactions between pathogen molecular motifs and specific host receptors, especially toll-like receptors (TLRs). Flagellin is the main flagellar protein of motile microorganisms and is the ligand of TLR5. The distribution of TLR5 and the actions of flagellin at the systemic level have not been established. Therefore, we determined TLR5 expression and the ability of flagellin to trigger prototypical innate immune responses and apoptosis in major organs from mice. Methods: Male Balb/C mice (n = 80) were injected intravenously with 1-5 mu g recombinant Salmonella flagellin. Plasma and organ samples were obtained after 0.5 to 6 h, for molecular investigations. The expression of TLR5, the activation state of nuclear factor kappa B (NF kappa B) and mitogen-activated protein kinases (MAPKs) [extracellular related kinase (ERK) and c-jun-NH2 terminal kinase (JNK)], the production of cytokines [tumor necrosis alpha (TNF alpha), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), macrophage inhibitory protein-2 (MIP-2) and soluble triggering receptor expressed on myeloid cells (TREM-1)], and the apoptotic cleavage of caspase-3 and its substrate Poly(ADP-ribose) polymerase (PARP) were determined in lung, liver, gut and kidney at different time-points. The time-course of plasma cytokines was evaluated up to 6 h after flagellin. Results: TLR5 mRNA and protein were constitutively expressed in all organs. In these organs, flagellin elicited a robust activation of NF kappa B and MAPKs, and induced significant production of the different cytokines evaluated, with slight interorgan variations. Plasma TNF alpha, IL-6 and MIP-2 disclosed a transient peak, whereas IL-1 beta and soluble TREM-1 steadily increased over 6 h. Flagellin also triggered a marked cleavage of caspase-3 and PARP in the intestine, pointing to its ability to promote significant apoptosis in this organ. Conclusions: Bacterial flagellin elicits prototypical innate immune responses in mice, leading to the release of multiple pro-inflammatory cytokines in the lung, small intestine, liver and kidney, and also activates apoptotic signalling in the gut. Therefore, this bacterial protein may represent a critical mediator of systemic inflammation and intestinal barrier failure in sepsis due to flagellated micro-organisms
Resumo:
Redox-based mechanisms play critical roles in the regulation of multiple cellular functions. NF-kappaB, a master regulator of inflammation, is an inducible transcription factor generally considered to be redox-sensitive, but the modes of interactions between oxidant stress and NF-kappaB are incompletely defined. Here, we show that oxidants can either amplify or suppress NF-kappaB activation in vitro by interfering both with positive and negative signals in the NF-kappaB pathway. NF-kappaB activation was evaluated in lung A549 epithelial cells stimulated with tumor necrosis factor alpha (TNFalpha), either alone or in combination with various oxidant species, including hydrogen peroxide or peroxynitrite. Exposure to oxidants after TNFalpha stimulation produced a robust and long lasting hyperactivation of NF-kappaB by preventing resynthesis of the NF-kappaB inhibitor IkappaB, thereby abrogating the major negative feedback loop of NF-kappaB. This effect was related to continuous activation of inhibitor of kappaB kinase (IKK), due to persistent IKK phosphorylation consecutive to oxidant-mediated inactivation of protein phosphatase 2A. In contrast, exposure to oxidants before TNFalpha stimulation impaired IKK phosphorylation and activation, leading to complete prevention of NF-kappaB activation. Comparable effects were obtained when interleukin-1beta was used instead of TNFalpha as the NF-kappaB activator. This study demonstrates that the influence of oxidants on NF-kappaB is entirely context-dependent, and that the final outcome (activation versus inhibition) depends on a balanced inhibition of protein phosphatase 2A and IKK by oxidant species. Our findings provide a new conceptual framework to understand the role of oxidant stress during inflammatory processes.
Resumo:
PURPOSE: To look for apoptosis pathways involved in corneal endothelial cell death during acute graft rejection and to evaluate the potential role of nitric oxide in this process. MATERIALS AND METHODS: Corneal buttons from Brown-Norway rats were transplanted into Lewis rat corneas. At different time intervals after transplantation, apoptosis was assessed by diamino-2-phenylindol staining and annexin-V binding on flat-mount corneas, and by terminal transferase dUTP nick end labeling (TUNEL), caspase-3 dependent and leukocyte elastase inhibitor (LEI)/LDNase II caspase-independent pathways on sections. Inducible nitric oxide synthase (NOS-II) expression and the presence of nitrotyrosine were assayed by immunohistochemistry. RESULTS: Graft endothelial cells demonstrated nuclear fragmentation and LEI nuclear translocation, annexin-V binding, and membranes bleb formation. Apoptosis associated with caspase-3 activity or TUNEL-positive reaction was not observed at any time either in the graft or in the recipient corneal endothelial cells. During 14 days posttransplantation, the recipient corneal endothelial cells remained unaltered and their number unchanged in all studied corneas. NOS-II was expressed in infiltrating cells present within the graft. This expression was closely associated with the presence of nitrotyrosine in endothelial and infiltrating cells. CONCLUSION: During the time course of corneal graft rejection, graft endothelial cells undergo apoptosis. Apoptosis is caspase 3 independent and TUNEL negative and is, probably, carried out by an alternative pathway driven by an LEI/L-Dnase II. Peroxynitrite formation may be an additional mechanism for cell toxicity and programmed cell death of the graft endothelial cells during the rejection process in this model.
Resumo:
In this study, we investigated the effect of the xanthine oxidase (XO) inhibitor, allopurinol (ALP), on cardiac dysfunction, oxidative-nitrosative stress, apoptosis, poly(ADP-ribose) polymerase (PARP) activity and fibrosis associated with diabetic cardiomyopathy in mice. Diabetes was induced in C57/BL6 mice by injection of streptozotocin. Control and diabetic animals were treated with ALP or placebo. Left ventricular systolic and diastolic functions were measured by pressure-volume system 10 weeks after established diabetes. Myocardial XO, p22(phox), p40(phox), p47(phox), gp91(phox), iNOS, eNOS mRNA and/or protein levels, ROS and nitrotyrosine (NT) formation, caspase3/7 and PARP activity, chromatin fragmentation and various markers of fibrosis (collagen-1, TGF-beta, CTGF, fibronectin) were measured using molecular biology and biochemistry methods or immunohistochemistry. Diabetes was characterized by increased myocardial, liver and serum XO activity (but not expression), increased myocardial ROS generation, p22(phox), p40(phox), p47(phox), p91(phox) mRNA expression, iNOS (but not eNOS) expression, NT generation, caspase 3/7 and PARP activity/expression, chromatin fragmentation and fibrosis (enhanced accumulation of collagen, TGF-beta, CTGF and fibronectin), and declined systolic and diastolic myocardial performance. ALP attenuated the diabetes-induced increased myocardial, liver and serum XO activity, myocardial ROS, NT generation, iNOS expression, apoptosis, PARP activity and fibrosis, which were accompanied by improved systolic (measured by the evaluation of both load-dependent and independent indices of myocardial contractility) and diastolic performance of the hearts of treated diabetic animals. Thus, XO inhibition with ALP improves type 1 diabetes-induced cardiac dysfunction by decreasing oxidative/nitrosative stress and fibrosis, which may have important clinical implications for the treatment and prevention of diabetic cardiomyopathy and vascular dysfunction.
Resumo:
PURPOSE OF REVIEW: Vitamin C is not only an essential nutrient involved in many anabolic pathways, but also an important player of the endogenous antioxidant defense. Low plasma levels are very common in critical care patients and may reflect severe deficiency states. RECENT FINDINGS: Vitamin C scavenges reactive oxygen species such as superoxide and peroxynitrite in plasma and cells (preventing damage to proteins, lipids and DNA), prevents occludin dephosphorylation and loosening of the tight junctions. Ascorbate improves microcirculatory flow impairment by inhibiting tumor-necrosis-factor-induced intracellular adhesion molecule expression, which triggers leukocyte stickiness and slugging. Clinical trials in sepsis, trauma and major burns testing high-dose vitamin C show clinical benefit. Restoration of normal plasma levels in inflammatory patients requires the administration of 3 g/day for several days, which is 30 times the daily recommended dose. SUMMARY: The recent research on the modulation of oxidative stress and endothelial protection offer interesting therapeutic perspectives, based on the biochemical evidence, with limited or even absent side-effects.
Resumo:
Diabetes is a recognized risk factor for cardiovascular diseases and heart failure. Diabetic cardiovascular dysfunction also underscores the development of diabetic retinopathy, nephropathy and neuropathy. Despite the broad availability of antidiabetic therapy, glycemic control still remains a major challenge in the management of diabetic patients. Hyperglycemia triggers formation of advanced glycosylation end products (AGEs), activates protein kinase C, enhances polyol pathway, glucose autoxidation, which coupled with elevated levels of free fatty acids, and leptin have been implicated in increased generation of superoxide anion by mitochondria, NADPH oxidases and xanthine oxidoreductase in diabetic vasculature and myocardium. Superoxide anion interacts with nitric oxide forming the potent toxin peroxynitrite via diffusion limited reaction, which in concert with other oxidants triggers activation of stress kinases, endoplasmic reticulum stress, mitochondrial and poly(ADP-ribose) polymerase 1-dependent cell death, dysregulates autophagy/mitophagy, inactivates key proteins involved in myocardial calcium handling/contractility and antioxidant defense, activates matrix metalloproteinases and redox-dependent pro-inflammatory transcription factors (e.g. nuclear factor kappaB) promoting inflammation, AGEs formation, eventually culminating in myocardial dysfunction, remodeling and heart failure. Understanding the complex interplay of oxidative/nitrosative stress with pro-inflammatory, metabolic and cell death pathways is critical to devise novel targeted therapies for diabetic cardiomyopathy, which will be overviewed in this brief synopsis. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Resumo:
An increased expression of nitric oxide synthase (NOS) has been observed in human colon carcinoma cell lines as well as in human gynecological, breast, and central nervous system tumors. This observation suggests a pathobiological role of tumor-associated NO production. Hence, we investigated NOS expression in human colon cancer in respect to tumor staging, NOS-expressing cell type(s), nitrotyrosine formation, inflammation, and vascular endothelial growth factor expression. Ca2+-dependent NOS activity was found in normal colon and in tumors but was significantly decreased in adenomas (P < 0.001) and carcinomas (Dukes' stages A-D: P < 0.002). Ca2+-independent NOS activity, indicating inducible NOS (NOS2), is markedly expressed in approximately 60% of human colon adenomas (P < 0.001 versus normal tissues) and in 20-25% of colon carcinomas (P < 0.01 versus normal tissues). Only low levels were found in the surrounding normal tissue. NOS2 activity decreased with increasing tumor stage (Dukes' A-D) and was lowest in colon metastases to liver and lung. NOS2 was detected in tissue mononuclear cells (TMCs), endothelium, and tumor epithelium. There was a statistically significant correlation between NOS2 enzymatic activity and the level of NOS2 protein detected by immunohistochemistry (P < 0.01). Western blot analysis of tumor extracts with Ca2+-independent NOS activity showed up to three distinct NOS2 protein bands at Mr 125,000-Mr 138,000. The same protein bands were heavily tyrosine-phosphorylated in some tumor tissues. TMCs, but not the tumor epithelium, were immunopositive using a polyclonal anti-nitrotyrosine antibody. However, only a subset of the NOS2-expressing TMCs stained positively for 3-nitrotyrosine, which is a marker for peroxynitrite formation. Furthermore, vascular endothelial growth factor expression was detected in adenomas expressing NOS2. These data are consistent with the hypothesis that excessive NO production by NOS2 may contribute to the pathogenesis of colon cancer progression at the transition of colon adenoma to carcinoma in situ.