975 resultados para peroxide bleaching
Resumo:
Papperstillverkningen störs ofta av oönskade föreningar som kan bilda avsättningar på processytor, vilket i sin tur kan ge upphov till störningar i pappersproduktionen samt försämring av papperskvaliteten. Förutom avsättningar av vedharts är stenliknande avlagringar av svårlösliga salter vanliga. I vårt dagliga liv är kalkavlagringar i kaffe- och vattenkokare exempel på liknande problem. I massa- och pappersindustrin är en av de mest problematiska föreningarna kalciumoxalat; detta salt är nästan olösligt i vatten och avlagringarna är mycket svåra att avlägsna. Kalciumoxalat är också känt som en av orsakerna till njurstenar hos människor. Veden och speciellt barken innehåller alltid en viss mängd oxalat men en större källa är oxalsyra som bildas när massan bleks med oxiderande kemikalier, t.ex. väteperoxid. Kalciumoxalat bildas när oxalsyran reagerar med kalcium som kommer in i processen med råvattnet, veden eller olika tillsatsmedel. I denna avhandling undersöktes faktorer som påverkar bildningen av oxalsyra och utfällningen av kalciumoxalat, med hjälp av bleknings- och utfällningsexperiment. Forskningens fokus låg speciellt på olika sätt att förebygga uppkomsten av avlagringar vid tillverkning av trähaltigt papper. Resultaten i denna avhandling visar att bildningen av oxalsyra samt utfällning av kalciumoxalat kan påverkas genom processtekniska och våtändskemiska metoder. Noggrann avbarkning av veden, kontrollerade förhållanden under den alkaliska peroxidblekningen, noggrann hantering och kontroll av andra lösta och kolloidala substanser, samt utnyttjande av skräddarsydd kemi för kontroll av avlagringar är nyckelfaktorer. Resultaten kan utnyttjas då man planerar blekningssekvenser för olika massor samt för att lösa problem orsakade av kalciumoxalat. Forskningsmetoderna som användes i utfällningsstudierna samt för utvärdering av tillsatsmedel kan också utnyttjas inom andra områden, t.ex. bryggeri- och sockerindustrin, där kalciumoxalatproblem är vanligt förekommande. -------------------------------------------- Paperinvalmistusta häiritsevät usein erilaiset epäpuhtaudet, jotka kiinnittyvät prosessipinnoille ja haittaavat tuotantoa sekä paperin laatua. Puun pihkan lisäksi eräs yleinen ongelma on niukkaliukoisten suolojen aiheuttamat kivettymät. Kalkkisaostuma kahvinkeittimessä on esimerkki vastaavasta ongelmasta arkielämässä. Massa- ja paperiteollisuudessa yksi hankalimmista kivettymien muodostajista on kalsiumoksalaatti, koska se on lähes liukenematonta ja sen aiheuttamat saostumat ovat erittäin vaikeasti poistettavia. Kalsiumoksalaatti on yleisesti tunnettu myös munuaiskivien aiheuttajana ihmisillä. Puu ja varsinkin sen kuori sisältää aina jonkin verran oksalaattia, mutta suurempi lähde on kuitenkin oksaalihappo jota muodostuu valkaistaessa massaa hapettavilla kemikaaleilla, kuten vetyperoksidilla. Kalsiumoksalaattia syntyy kun veden, puun ja lisäaineiden mukana prosessiin tuleva kalsium reagoi oksalaatin kanssa. Tässä väitöskirjatyössä tutkittiin oksaalihapon muodostumiseen ja kalsiumoksalaatin saostumiseen vaikuttavia tekijöitä valkaisu- ja saostumiskokeiden avulla. Tutkimuksen painopiste oli saostumien ehkäisemisessä puupitoisten painopaperien valmistuksessa. Työssä saadut tulokset osoittavat että oksaalihapon muodostumiseen ja kalsiumoksalaatin saostumiseen voidaan vaikuttaa sekä prosessiteknisten että märänpään kemian keinojen avulla. Tehokas puun kuorinta, optimoidut olosuhteet peroksidivalkaisussa, muiden liuenneiden ja kolloidisten aineiden hallinta sekä räätälöidyn kemian hyödyntäminen kalsiumoksalaattisaostumien torjunnassa ovat keskeisissä rooleissa ongelmien välttämiseksi. Väitöskirjatyön tuloksia voidaan hyödyntää massan valkaisulinjoja suunniteltaessa sekä kalsiumoksalaatin aiheuttamien ongelmien ratkaisemisessa. Tutkimusmenetelmiä, joita käytettiin saostumiskokeissa ja eri lisäaineiden vaikutusten arvioinnissa, voidaan hyödyntää massa- ja paperiteollisuuden lisäksi myös muilla alueilla, kuten sokeri- ja panimoteollisuudessa, joissa ongelma on myös yleinen.
Resumo:
Purpose: The use of different light sources as an adjunct to in-office bleaching has been questioned. Thus, the aim of this study was to evaluate the color changes of teeth after application of bleaching techniques with different products, with and without activation by a LED-laser system. Methods: Twenty-four bovine teeth surfaces were submitted to three bleaching techniques with two commercially available 35% hydrogen peroxide bleaching agents (n=8). The specimens were immersed in red wine for 48 h at 37°C and submitted to the bleaching techniques. Color changes were measured before and after staining as well as immediately after and 24 h after the bleaching treatments, with two different methods of color evaluation, software ScanWhite V1.1 and intra-oral spectrophotometer (Vita Easyshade). Data were analyzed by ANOVA and Kruskal-Wallis test. Results: The statistical analysis showed that there was no statistically significant difference at 5% of significance level between the different groups, independently of the evaluation time, evaluation methods or the use of LED-laser systems. Conclusion: The results suggested that the use of light in the bleaching techniques did not influence the color changes. Copyright: © 2011 Roberto et al.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study evaluated the effect of physical and chemical activation on the speed of penetration of hydrogen peroxide bleaching agents present in different concentrations through the enamel and dentin. One hundred and twenty bovine incisors were used, which were obtained enamel/dentin discs of the buccal surface, with 6 mm in diameter. The samples were divided into six groups: G1 - Hydrogen Peroxide Gel 20%, G2 - Hydrogen Peroxide Gel 20% with light activation, G3 - Hydrogen Peroxide Gel 20% with Manganese Gluconate; G4 - Hydrogen Peroxide Gel 35%; G5 - Hydrogen Peroxide Gel 35% with the light activation and G6 - Hydrogen Peroxide Gel 35% with Manganese Gluconate. The specimens were placed in a transparent support on which there was a substance sensitive to hydrogen peroxide immediately below and in contact with the specimen. After the procedures for applying the gel for each group, one video camera was positioned and operated to monitor the time of penetration of peroxide in each specimen. The recording ended after changing the color of the fluid revealed in all specimens and times were noted for comparison. ANOVA analysis showed that concentration and type of activation of bleaching gel significantly influenced the diffusion time of hydrogen peroxide (P 0.05). 35% hydrogen peroxide showed the lowest diffusion times compared to the groups with 20% hydrogen peroxide gel. The light activation of hydrogen peroxide decrease significantly the diffusion time compared to chemical activation. The highest diffusion time was obtained with 20% hydrogen peroxide chemically activated. The diffusion time of hydrogen peroxide was dependent on activation and concentration of hydrogen peroxide. The higher concentration of hydrogen peroxide diffused through dental tissues more quickly
Resumo:
Dental tooth bleaching is a conservative option for the treatment of tooth stains. It is based on the use of hydrogen peroxide as an active agent. Despite its effectiveness to lighten tooth colour, there is concern regarding its use due to the effects it could have over enamel surface. There is scarce evidence on the subject and contradictions exist between different authors. The aim of this study was to compare enamel surface micromorphology after bleaching teeth with different concentrations of hydrogen peroxide solutions. Method: 50 healthy bovine incisors sectioned horizontally at the cemento-enamel junction were prepared. Contents of pulp chamber and tooth surfaces were cleaned. The buccal surface of each tooth was divided vertically, assigning one half to the control group (CG) and the other randomly to: Group 1: 25 samples treated with 15% hydrogen peroxide with nitrogen doped titanium dioxide. Group 2: 25 samples treated with 35% hydrogen peroxide. Square samples (2x2 mm.) were obtained and observed by SEM (magnification of 5.000x and 10.000x). Results: All treated groups showed longitudinal depressions on the surface and increased surface roughness. Conclusions: Tooth bleaching with hydrogen peroxide produces subclinical alterations over bovine enamel surface. 15% hydrogen peroxide bleaching agent produced less micromorphology alteration over bovine enamel surface than the 35% hydrogen peroxide agent.
Resumo:
Abstract Objective. The aim of this study was to evaluate the alteration of human enamel bleached with high concentrations of hydrogen peroxide associated with different activators. Materials and methods. Fifty enamel/dentin blocks (4 × 4 mm) were obtained from human third molars and randomized divided according to the bleaching procedure (n = 10): G1 = 35% hydrogen peroxide (HP - Whiteness HP Maxx); G2 = HP + Halogen lamp (HL); G3 = HP + 7% sodium bicarbonate (SB); G4 = HP + 20% sodium hydroxide (SH); and G5 = 38% hydrogen peroxide (OXB - Opalescence Xtra Boost). The bleaching treatments were performed in three sessions with a 7-day interval between them. The enamel content, before (baseline) and after bleaching, was determined using an FT-Raman spectrometer and was based on the concentration of phosphate, carbonate, and organic matrix. Statistical analysis was performed using two-way ANOVA for repeated measures and Tukey's test. Results. The results showed no significant differences between time of analysis (p = 0.5175) for most treatments and peak areas analyzed; and among bleaching treatments (p = 0.4184). The comparisons during and after bleaching revealed a significant difference in the HP group for the peak areas of carbonate and organic matrix, and for the organic matrix in OXB and HP+SH groups. Tukey's analysis determined that the difference, peak areas, and the interaction among treatment, time and peak was statistically significant (p < 0.05). Conclusion. The association of activators with hydrogen peroxide was effective in the alteration of enamel, mainly with regards to the organic matrix.
Resumo:
Objective. The aim was to evaluate the bleaching efficacy of sodium perborate/37% carbamide peroxide paste and traditional sodium perborate/distilled water for intracoronal bleaching. Study design. Thirty patients with dark anterior teeth were divided into 2 groups (n = 15): group A: sodium perborate/ distilled water; and group B: sodium perborate/37% carbamide peroxide paste. The bleaching treatment limited each patient to the maximum of 4 changes of the bleaching agent. Initial and final color shades were measured using the Vita Lumin shade guide. Results. Data was analyzed with Wilcoxon test for initial and final comparison according to the bleaching agent, demonstrating efficacy of the bleaching treatment with both agents. Mann-Whitney test was used for comparison of the efficacy of the bleaching agents, showing that there was no significant difference between them. Conclusion. The sodium perborate/37% carbamide peroxide association for intracoronal bleaching has proven to be as effective as sodium perborate/distilled water. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107: e43-e47)
Resumo:
Kraft pulp is currently bleached largely by the elemental chlorine free (ECF) technology with oxygen, chlorine dioxide, and hydrogen as active agents. This technology brought about significant environmental improvements in relation to standard processes based on chlorine gas and hypochlorite, but there is still need for further improvements. This study presents a novel environmentally friendly bleaching stage - the so-called `hydrogen peroxide in supercritical carbon dioxide`, P((SC-CO2)) - that can be adapted to current ECF bleaching processes, with preference in cases where hydrogen peroxide is already used. In this study, the P((SC-CO2)) stage was evaluated as a replacement to the last peroxide stage of the D(EP)DP bleaching sequence and to the first peroxide stage of the D(EP)DP sequence, for an oxygen delignified eucalypt kraft-O(2) pulp. The P((SC-CO2)) stage was run with 0.5% hydrogen peroxide, at 15% consistency, 70 degrees C, and 73 bar. The reaction time was 30 min. The performances of regular P stages and the new P((SC-CO2)) stage were compared. Promising results were observed with the DEP((SC-CO2))DP sequence; the P((SC-CO2)) decreased kappa number from 2.7 to 2.1, and the hexenuronic acid groups from 17.0 to 12.4 mmol kg(-1). The P((SC-CO2)) stage showed poor performance when applied in the D(EP)DP((SC-CO2)) sequence. It is concluded that the process presents potential but requires further optimization to improve selectivity and efficiency.
Resumo:
Purpose: To quantify the amount of peroxide penetration from the pulp chamber to the external surface of teeth during the walking bleaching technique. Methods: Seventy-two bovine lateral incisors were randomly divided over five experimental groups and one control (n = 12 per group): (1) 35% hydrogen peroxide (HP); (2) 35% carbamide peroxide (CP); (3) sodium perborate (SP); (4) (HP+SP); (5) (CP+SP) and (6) Control (CG), deionized water. All groups were treated according to the walking bleach technique. After 7 days at 37 degrees C in an acetate buffer solution, 100 mu l violet leukocrystal coloring and 50 mu l peroxidase was added, producing a blue stain that could be measured in a spectrophotometer and then converted into peroxide mu g/ml. Results: G5 exhibited the greatest penetration, while G2 and G3 produced the lowest values. All bleaching agents penetrated from the pulp chamber to the external root surface. There was a direct correlation between the presence of oxidative agents and penetration potential. Sodium perborate in distilled water was less oxidative and appeared to be the least aggressive bleaching agent. (Am J Dent 2010;23:171-174).
Resumo:
The aim of this study was to evaluate the amount of peroxide passage from the pulp chamber to the external enamel surface during the internal bleaching technique. Fifty bovine teeth were sectioned transversally 5 mm below the cemento-enamel junction (CEJ), and the remaining part of the root was sealed with a 2-mm layer of glass ionomer cement. The external surface of the samples was coated with nail varnish, with the exception of standardized circular areas (6-mm diameter) located on the enamel, exposed dentin, or cementum surface of the tooth. The teeth were divided into three experimental groups according to exposed areas close to the CEJ and into two control groups (n=10/group), as follows: GE, enamel exposure area; GC, cementum exposed area; GD, dentin exposed area; Negative control, no presence of internal bleaching agent and uncoated surface; and Positive control, pulp chamber filled with bleaching agent and external surface totally coated with nail varnish. The pulp chamber was filled with 35% hydrogen peroxide (Opalescence Endo, Ultradent). Each sample was placed inside of individual flasks with 1000 mu L of acetate buffer solution, 2 M (pH 4.5). After seven days, the buffer solution was transferred to a glass tube, in which 100 mu L of leuco-crystal violet and 50 mu L of horseradish peroxidase were added, producing a blue solution. The optical density of the blue solution was determined by spectrophotometer and converted into microgram equivalents of hydrogen peroxide. Data were submitted to Kruskal-Wallis and Dunn-Bonferroni tests (alpha=0.05). All experimental groups presented passage of peroxide to the external surface that was statistically different from that observed in the control groups. It was verified that the passage of peroxide was higher in GD than in GE (p<0.01). The GC group presented a significantly lower peroxide passage than did GD and GE (p<0.01). It can be concluded that the hydrogen peroxide placed into the pulp chamber passed through the dental hard tissues, reaching the external surface and the periodontal tissue. The cementum surface was less permeable than were the dentin and enamel surfaces.
Resumo:
The objective of this in vitro study was to quantitatively assess the effects of bleaching with 10 and 15% carbamide peroxide (CP) on restoration materials by performing superficial microhardness analysis. Acrylic cylindrical containers (4 x 2 mm) were filled with the following restoration products: Charisma (Heraues Kulzer, Vila Santa Catarina, São Paulo, Brazil), Durafill VS (Heraeus Kulzer), Vitremer (3M, Sumaré, São Paulo, Brazil), Dyract (Dentsply, Petrópolis, Rio de Janeiro, Brazil), and Permite C (SDI, São Pauio, São Paulo, Brazil). Sixty samples were prepared of each restoration material. Twenty samples received bleaching treatment with 10% CP, 20 samples received bleaching treatment with 15% CP, and 20 samples were kept submerged in artificial saliva, which was replaced daily. The treatment consisted of immersion of the specimens in 1 cm3 of CP at 10 and 15% for 6 hours per day during 3 weeks, whereupon the test specimens were washed, dried, and kept immersed in artificial saliva for 18 hours. Then the test and control specimens were analyzed using a microhardness gauge. The Knoop Hardness Number (KHN) was taken for each test and control specimen at five different locations by applying a 25 g force for 20 seconds. The values obtained were transformed into KHNs and the mean was calculated. The data were submitted to statistical analysis by analysis of variance and Tukey test, p < .05. The means/standard deviations were as follows: Charisma: CP 10% 38.52/4.08, CP 15% 34.31/6.13, saliva 37.36/4.48; Durafill VS: CP 10% 18.65/1.65, CP 15% 19.38/2.23, saliva 18.27/1.43; Dyract AP: CP 10% 30.26/2.81, CP 15% 28.64/5.44, saliva 33.88/3.46; Vitremer: CP 10% 28.15/3.04, CP 15% 17.40/3.11, saliva 40.93/4.18; and Permite C: CP 10% 183.50/27.09, CP 15% 159.45/5.78, saliva 215.80/26.15. A decrease in microhardness was observed for the materials Dyract AP, Vitremer, and Permite C after treatment with CP at 10 and 15%, whereas no effect on either of the two composites (Charisma and Durafill) was verified. CLINICAL SIGNIFICANCE: The application of the carbamide peroxide gels at 10 and 15% did not alter the microhardness of the composite resins Charisma and Durafill. In situ and clinical studies are necessary to enable one to conclude that the reduction in microhardness of the materials effectively results in clinical harm to the restorations.