948 resultados para peroneus nerve


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly-ε-caprolactone (PCL) is a biodegradable and biocompatible polymer used in tissue engineering for various clinical applications. Schwann cells (SCs) play an important role in nerve regeneration and repair. SCs attach and proliferate on PCL films but cellular responses are weak due to the hydrophobicity and neutrality of PCL. In this study, PCL films were hydrolysed and aminolysed to modify the surface with different functional groups and improve hydrophilicity. Hydrolysed films showed a significant increase in hydrophilicity while maintaining surface topography. A significant decrease in mechanical properties was also observed in the case of aminolysis. In vitro tests with Schwann cells (SCs) were performed to assess film biocompatibility. A short-time experiment showed improved cell attachment on modified films, in particular when amino groups were present on the material surface. Cell proliferation significantly increased when both treatments were performed, indicating that surface treatments are necessary for SC response. It was also demonstrated that cell morphology was influenced by physico-chemical surface properties. PCL can be used to make artificial conduits and chemical modification of the inner lumen improves biocompatibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gold standard in surgical management of a peripheral nerve gap is currently autologous nerve grafting. This confers patient morbidity and increases surgical time therefore innovative experimental strategies towards engineering a synthetic nerve conduit are welcome. We have developed a novel synthetic conduit made of poly ε-caprolactone (PCL) that has demonstrated promising peripheral nerve regeneration in short-term studies. This material has been engineered to permit translation into clinical practice and here we demonstrate that histological outcomes in a long-term in vivo experiment are comparable with that of autologous nerve grafting. A 1cm nerve gap in a rat sciatic nerve injury model was repaired with a PCL nerve conduit or an autologous nerve graft. At 18 weeks post surgical repair, there was a similar volume of regenerating axons within the nerve autograft and PCL conduit repair groups, and similar numbers of myelinated axons in the distal stump of both groups. Furthermore, there was evidence of comparable re-innervation of end organ muscle and skin with the only significant difference the lower wet weight of the muscle from the PCL conduit nerve repair group. This study stimulates further work on the potential use of this synthetic biodegradable PCL nerve conduit in a clinical setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The training and ongoing education of medical practitioners has undergone major changes in an incremental fashion over the past 15 years. These changes have been driven by patient safety, educational, economic and legislative/regulatory factors. In the near future, training in procedural skills will undergo a paradigm shift to proficiency based progression with associated requirements for competence-based programmes, valid, reliable assessment tools and simulation technology. Before training begins, the learning outcomes require clear definition; any form of assessment applied should include measurement of these outcomes. Currently training in a procedural skill often takes place on an ad hoc basis. The number of attempts necessary to attain a defined degree of proficiency varies from procedure to procedure. Convincing evidence exists that simulation training helps trainees to acquire skills more efficiently rather than relying on opportunities in their clinical practice. Simulation provides a safe, stress free environment for trainees for skill acquisition, generalization and transfer via deliberate practice. The work described in this thesis contributes to a greater understanding of how medical procedures can be performed more safely and effectively through education. The effect of feedback, provided to novices in a standardized setting on a bench model, based on knowledge of performance was associated with an increase in the speed of skill acquisition and a decrease in error rate during initial learning. The timing of feedback was also associated with effective learning of skill. A marked attrition of skills (independent of the type of feedback provided) was demonstrable 24 hrs after they have first been learned. Using the principles of feedback as described above, when studying the effect of an intense training program on novices of varied years of experience in anaesthesia (i.e. the present training programmes / courses of an intense training day for one or more procedures). There was a marked attrition of skill at 24 hours with a significant correlation with increasing years of experience; there also appeared to be an inverse relationship between years of experience in anaesthesia and performance. The greater the number of years of practice experience, the longer it required a learner to acquire a new skill. The findings of the studies described in this thesis may have important implications for the trainers, trainees and training bodies in the design and implementation of training courses and the formats of delivery of changing curricula. Both curricula and training modalities will need to take account of characteristics of individual learners and the dynamic nature of procedural healthcare.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vertebrate brain actively regulates incoming sensory information, effectively filtering input and focusing attention toward environmental stimuli that are most relevant to the animal's behavioral context or physiological state. Such centrifugal modulation has been shown to play an important role in processing in the retina and cochlea, but has received relatively little attention in olfaction. The terminal nerve, a cranial nerve that extends underneath the lamina propria surrounding the olfactory epithelium, displays anatomical and neurochemical characteristics that suggest that it modulates activity in the olfactory epithelium. Using immunocytochemical techniques, we demonstrate that neuropeptide Y (NPY) is abundantly present in the terminal nerve in the axolotl (Ambystoma mexicanum), an aquatic salamander. Because NPY plays an important role in regulating appetite and hunger in many vertebrates, we investigated the possibility that NPY modulates activity in the olfactory epithelium in relation to the animal's hunger level. We therefore characterized the full-length NPY gene from axolotls to enable synthesis of authentic axolotl NPY for use in electrophysiological experiments. We find that axolotl NPY modulates olfactory epithelial responses evoked by L-glutamic acid, a food-related odorant, but only in hungry animals. Similarly, whole-cell patch-clamp recordings demonstrate that bath application of axolotl NPY enhances the magnitude of a tetrodotoxin-sensitive inward current, but only in hungry animals. These results suggest that expression or activity of NPY receptors in the olfactory epithelium may change with hunger level, and that terminal nerve-derived peptides modulate activity in the olfactory epithelium in response to an animal's changing behavioral and physiological circumstances.