202 resultados para pendulum
Resumo:
A method is described for measuring the mechanical properties of polymers in compression at strain rates in the range approximately 300-500 s-1. A gravity-driven pendulum is used to load a specimen on the end of an instrumented Hopkinson output bar and the results are processed by a microcomputer. Stress-strain curves up to high strains are presented for polycarbonate, polyethersulphone and high density polyethylene over a range of temperatures. The value of yield stress, for all three polymers, was found to vary linearly with log (strain rate) at strain rates up to 500 s-1. © 1985.
Resumo:
The contribution described in this paper is an algorithm for learning nonlinear, reference tracking, control policies given no prior knowledge of the dynamical system and limited interaction with the system through the learning process. Concepts from the field of reinforcement learning, Bayesian statistics and classical control have been brought together in the formulation of this algorithm which can be viewed as a form of indirect self tuning regulator. On the task of reference tracking using a simulated inverted pendulum it was shown to yield generally improved performance on the best controller derived from the standard linear quadratic method using only 30 s of total interaction with the system. Finally, the algorithm was shown to work on the simulated double pendulum proving its ability to solve nontrivial control tasks. © 2011 IEEE.
Resumo:
Gaussian processes are gaining increasing popularity among the control community, in particular for the modelling of discrete time state space systems. However, it has not been clear how to incorporate model information, in the form of known state relationships, when using a Gaussian process as a predictive model. An obvious example of known prior information is position and velocity related states. Incorporation of such information would be beneficial both computationally and for faster dynamics learning. This paper introduces a method of achieving this, yielding faster dynamics learning and a reduction in computational effort from O(Dn2) to O((D - F)n2) in the prediction stage for a system with D states, F known state relationships and n observations. The effectiveness of the method is demonstrated through its inclusion in the PILCO learning algorithm with application to the swing-up and balance of a torque-limited pendulum and the balancing of a robotic unicycle in simulation. © 2012 IEEE.
Resumo:
An experimental technique has been developed in order to mimic the effect of landmine loading on materials and structures to be studied in a laboratory setting, without the need for explosives. Compressed gas is discharged beneath a sand layer, simulating the dynamic flow generated by a buried explosive. High speed photography reveals that the stages of soil motion observed during a landmine blast are replicated. The effect of soil saturation and the depth of the sand layer on sand motion are evaluated. Two series of experiments have been performed with the buried charge simulator to characterise subsequent impact of the sand. First, the time variation in pressure and impulse during sand impact on a stationary target is evaluated using a Kolsky bar apparatus. It is found that the pressure pulse imparted to the Kolsky bar consists of two phases: an initial transient phase of high pressure (attributed to wave propagation effects in the impacting sand), followed by a lower pressure phase of longer duration (due to lateral flow of the sand against the Kolsky bar). Both phases make a significant contribution to the total imparted impulse. It is found that wet sand exerts higher peak pressures and imparts a larger total impulse than dry sand. The level of imparted impulse is determined as a function of sand depth, and of stand-off distance between the sand and the impacted end of the Kolsky bar. The second study uses a vertical impulse pendulum to measure the momentum imparted by sand impact to a target which is free to move vertically. The effect of target mass upon imparted momentum is investigated. It is concluded that the laboratory-scale sand impact apparatus is a flexible tool for investigating the interactions between structures and dynamic sand flows. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
A vibration energy harvester designed to access parametric resonance can potentially outperform the conventional direct resonant approach in terms of power output achievable given the same drive acceleration. Although linear damping does not limit the resonant growth of parametric resonance, a damping dependent initiation threshold amplitude exists and limits its onset. Design approaches have been explored in this paper to passively overcome this limitation in order to practically realize and exploit the potential advantages. Two distinct design routes have been explored, namely an intrinsically lower threshold through a pendulum-lever configuration and amplification of base excitation fed into the parametric resonator through a cantilever-initial-spring configuration. Experimental results of the parametric resonant harvesters with these additional enabling designs demonstrated an initiation threshold up to an order of magnitude lower than otherwise, while attaining a much higher power peak than direct resonance. © 2014 IOP Publishing Ltd.
Resumo:
Throwing is a complex and highly dynamic task. Humans usually exploit passive dynamics of their limbs to optimize their movement and muscle activation. In order to approach human throwing, we developed a double pendulum robotic platform. To introduce passivity into the actuated joints, clutches were included in the drive train. In this paper, we demonstrate the advantage of exploiting passive dynamics in reducing the mechanical work. However, engaging and disengaging the clutches are done in discrete fashions. Therefore, we propose an optimization approach which can deal with such discontinuities. It is shown that properly engaging/disengaging the clutches can reduce the mechanical work of a throwing task. The result is compared to the solution of fully actuated double pendulum, both in simulation and experiment. © 2012 IEEE.
Resumo:
There has been an increasing interest in the use of mechanical dynamics, (e.g., assive, Elastic, And viscous dynamics) for energy efficient and agile control of robotic systems. Despite the impressive demonstrations of behavioural performance, The mechanical dynamics of this class of robotic systems is still very limited as compared to those of biological systems. For example, Passive dynamic walkers are not capable of generating joint torques to compensate for disturbances from complex environments. In order to tackle such a discrepancy between biological and artificial systems, We present the concept and design of an adaptive clutch mechanism that discretely covers the full-range of dynamics. As a result, The system is capable of a large variety of joint operations, including dynamic switching among passive, actuated and rigid modes. The main innovation of this paper is the framework and algorithm developed for controlling the trajectory of such joint. We present different control strategies that exploit passive dynamics. Simulation results demonstrate a significant improvement in motion control with respect to the speed of motion and energy efficiency. The actuator is implemented in a simple pendulum platform to quantitatively evaluate this novel approach.
Resumo:
作为可再生能源,波浪能的吸收和利用一直是国内外热点研究内容之一。本文提出一种新的基于惯性摆结构的波浪能吸收转换方法,对这种结构在波浪力作用下的频域响应进行了分析,建立了其最优化能量获取模型,提出采用多种群遗传算法对其结构进行优化设计,并针对系统所受波浪力(矩)随载体半径改变而改变,且求取困难的问题,采用最小二乘法对波浪力(矩)与载体半径变化的关系进行了拟和。通过优化结果找出影响结构获取波浪能量的因素,仿真结果表明了方法的先进性,为进一步的应用研究和频域波能获取研究奠定了基础。
Resumo:
提出了一种基于惯性摆结构的波浪能吸收转换方法,并对采用此结构构成的水中载体所受到的波浪力及水动力进行了理论分析,建立了实验模型,对其进行了运动学、动力学仿真实验,仿真结果证明了方案的可行性。
Resumo:
随着陆地战略资源日益短缺以及经济的全球化进展,海洋资源的开发利用已成为沿海各国的重要发展战略之一,也成为地球资源保护与开发的关注热点。 海洋资源开发和利用能力对于一个国家的科研、经济实力具有重大的影响及意义。由于海洋资源开发利用和地球环境监测的迫切需求,促进了水下机器人、水下潜器等无人水中移动载体技术的发展。能源供给技术是水中移动载体系统的关键技术,能源技术对海洋人工系统的生存、作业、自主能力提升具有重要意义。目前海洋移动人工系统主要依赖自携带能源形式,针对水中移动载体的能量自补给技术研究还处于探索阶段。 地球表面有70%的面积被海水所覆盖,海水中蕴藏巨大的波浪能。具有环保、再生特色的波浪能开发利用技术长期以来一直受到国内外科研人员的关注。随着海洋战略地位的提升,海洋自主人工系统已成为海洋科学技术的重点发展内容。利用波浪能为海洋人工移动载体进行能量补给,是对于海洋波浪能利用的一种新的方法和思路。这对于提高海洋人工系统的自主生存、续航能力,提高人类在海洋资源与环境的探测、开发利用等方面的技术能力无疑具有重大意义。因而研究面向海洋人工系统的波浪能利用机理和系统实现技术无疑具有广泛的应用前景。 本文针对海洋人工移动载体自主能量获取利用这一重大科学技术需求,依托中国科学院基地创新基金项目“基于惯性摆原理的无源系统研究”,探索基于惯性摆机理的移动载体波浪能自主获取的机理,研究相关设计理论和技术方法。 由于目前尚无基于惯性摆机理的海洋移动载体能量自补给技术的相关研究成果。因而本论文的研究主要从理论分析和实验方法两个方面开展。重点分析了惯性摆的外激励能量获取机理,基于惯性摆的波浪机械能获取理论的可行性;开展了惯性摆载体的水动力学建模,原理样机的仿真,频域下的能量建模和优化,非线性波浪条件模拟,惯性摆载体的能量获取结构优化等研究工作。主要研究工作如下: 1.针对基于惯性摆机理的移动载体随机波能获取研究方案,分析了相关单摆及惯性摆机械能量转换机理,采用动量及动量矩定理,构建了惯性摆载体的六自由度运动学和动力学方程。 2.进行了相关水动力系数获取方法研究,获得了水动力系数数学描述。同时,采用虚拟样机方法进行惯性摆载体能量获取的研究,证明了基于惯性摆的波能自主获取方法的可行性及有效性。 3.针对虚拟样机方法建模的复杂性及容易产生错误等问题,进行了基于BP神经网络方法的惯性摆能量吸收效率的建模研究。并研究了基于该模型的不同波向角及波浪频率、载体外形尺寸、质量等的虚拟样机的波浪能吸收效率问题,为载体机构的改进及设计提供了较好的理论模型和基础。 4.开展了频域下惯性摆能量吸收效率研究。研究了基于频域的单惯性摆载体的动力学建模方法以及载体结构优化方法,提出采用多种群遗传算法进行载体结构的优化设计方法。通过仿真实验证明了相关算法的有效性,为系统的优化设计研究提供了理论基础。 5.以能量吸收效率最大为目标,进行了多种惯性摆形式的能量获取最大化分析研究,提出了包括单摆在内的多种可行的形式,给出了对比研究结果,可根据不同的提取形式而确定采用的惯性摆的形式。 6.采用PM谱对非线性波浪进行了模拟,研究了单惯性摆结构在非线性波浪力下的能量获取情况,仿真结果表明,在非线性条件下获取的惯性摆能量要更多,而其他波向角、频率等优化条件均与线性条件下的研究结果相同。
Resumo:
In this thesis, the evanescent field sensing techniques of tapered optical nanofibres and microspherical resonators are investigated. This includes evanescent field spectroscopy of a silica nanofibre in a rubidium vapour; thermo-optical tuning of Er:Yb co-doped phosphate glass microspheres; optomechanical properties of microspherical pendulums; and the fabrication and characterisation of borosilicate microbubble resonators. Doppler-broadened and sub-Doppler absorption spectroscopic techniques are performed around the D2 transition (780.24 nm) of rubidium using the evanescent field produced at the waist of a tapered nanofibre with input probe powers as low as 55 nW. Doppler-broadened Zeeman shifts and a preliminary dichroic atomic vapour laser lock (DAVLL) line shape are also observed via the nanofibre waist with an applied magnetic field of 60 G. This device has the potential for laser frequency stabilisation while also studying the effects of atom-surface interactions. A non-invasive thermo-optical tuning technique of Er:Yb co-doped microspheres to specific arbitrary wavelengths is demonstrated particularly to 1294 nm and the 5S1/2F=3 to 5P3/2Fʹ=4 laser cooling transition of 85Rb. Reversible tuning ranges of up to 474 GHz and on resonance cavity timescales on the order of 100 s are reported. This procedure has prospective applications for sensing a variety of atomic or molecular species in a cavity quantum electrodynamics (QED) experiments. The mechanical characteristics of a silica microsphere pendulum with a relatively low spring constant of 10-4 Nm-1 are explored. A novel method of frequency sweeping the motion of the pendulum to determine its natural resonance frequencies while overriding its sensitivity to environmental noise is proposed. An estimated force of 0.25 N is required to actuate the pendulum by a displacement of (1-2) μm. It is suggested that this is of sufficient magnitude to be experienced between two evanescently coupled microspheres (photonic molecule) and enable spatial trapping of the micropendulum. Finally, single-input borosilicate microbubble resonators with diameters <100 μm are fabricated using a CO2 laser. Optical whispering gallery mode spectra are observed via evanescent coupling with a tapered fibre. A red-shift of (4-22) GHz of the resonance modes is detected when the hollow cavity was filled with nano-filtered water. A polarisation conversion effect, with an efficiency of 10%, is observed when the diameter of the coupling tapered fibre waist is varied. This effect is also achieved by simply varying the polarisation of the input light in the tapered fibre where the efficiency is optimised to 92%. Thus, the microbubble device acts as a reversible band-pass to band-stop optical filter for cavity-QED, integrated solid-state and semiconductor circuit applications.
Resumo:
p.37-41
Resumo:
The use of social work case files as an important research resource is being threatened by the increasing regulation of both the research process and access to personal identifiable information. While these developments can be seen as a reaction to specific incidents of inappropriate research and the misuse of personal information, it is argued that the pendulum has swung too far the other way, and in seeking to protect the rights of vulnerable individuals, the lives of these same individuals may go unstudied with the consequence that they receive less appropriate services. Drawing upon the current research of the authors, this article explores the difficulties encountered in gaining access to social work case files for research purposes without the explicit consent of service users and highlights the uncertainty surrounding this issue. Suggestions are made for improvements in the situation.
Resumo:
Closing feedback loops using an IEEE 802.11b ad hoc wireless communication network incurs many challenges sensitivity to varying channel conditions and lower physical transmission rates tend to limit the bandwidth of the communication channel. Given that the bandwidth usage and control performance are linked, a method of adapting the sampling interval based on an 'a priori', static sampling policy has been proposed and, more significantly, assuring stability in the mean square sense using discrete-time Markov jump linear system theory. Practical issues including current limitations of the 802.11 b protocol, the sampling policy and stability are highlighted. Simulation results on a cart-mounted inverted pendulum show that closed-loop stability can be improved using sample rate adaptation and that the control design criteria can be met in the presence of channel errors and severe channel contention.
Resumo:
A incorporação de materiais absorsores de energia (AE) em sistemas de protecção é uma clara possibilidade de melhoraria do seu desempenho, devido à elevada relação entre a sua resistência e o seu peso, e a excelente capacidade para absorverem energia quando solicitados dinamicamente. As propriedades mecânicas da cortiça (e.g. a baixa densidade e a elevada rigidez e resistência específicas) sugerem que este material — assim como os seus derivados — podem apresentar propriedades excelentes quando aplicados como núcleos em sistemas AE do tipo estrutura sanduíche. Esta dissertação engloba trabalho experimental e numérico. O primeiro conjunto de testes experimentais consistiu na caracterização experimental dinâmica (ondas de choque de explosivos) do comportamento de dois micra aglomerados de cortiça (MAC), NL20 e TB40. Um pendulo balístico de 4 cabos foi usado para a medição do impulso transmitido a uma amostra de MAC impactada por uma onda de choque com origem na detonação de um explosivo energético. Foi registado o movimento do pêndulo e os valores de força resultantes. Um modelo numérico do problema recorrendo ao método dos elementos finitos (MEF) foi também desenvolvido, apresentando uma elevada correlação com a análise experimental, permitindo assim o desenvolvimento de um modelo constitutivo adequado à modelação do comportamento dinâmico dos MAC neste tipo de solicitações. Na segunda fase de testes experimentais, os MAC testados anteriormente são incorporados como núcleos em estruturas sanduíche com faces de alumínio (liga 5754-H22). Foram medidos os valores de defleção e o impulso transmitido ao pêndulo através do movimento oscilatório. São determinados os efeitos da densidade e da espessura dos núcleos na resposta estrutural do sistema. Também neste caso foi desenvolvido um modelo recorrendo ao MEF e posteriormente validado com resultados experimentais.