949 resultados para penaeid shrimp
Resumo:
Background: Shrimp is a frequent cause of food allergy. Tropomyosin is the major allergen in shrimp, and it shares homology to tropomyosins from other crustaceans, dust mites, cockroach, and parasites. Objective: The aim of this study was to determine the value of detection of IgE to shrimp tropomyosin in the diagnosis of shrimp allergy. Methods: We have studied 35 patients with asthma, rhinitis, or both who were sensitized to Dermatophagoides pteronyssinus. All subjects underwent skin prick testing in addition to double-blind, placebo-controlled food challenges (DBPCFC); oral open challenges; or both with shrimp. Measurements of IgE to shrimp and shrimp tropomyosin were carried out by means of CAP and chimeric ELISA, respectively. Results: Oral challenges confirmed the diagnosis of shrimp allergy in 7 patients. IgE measurement to shrimp tropomyosin was positive in 71.4% of the patients with shrimp allergy. Of the 28 patients without shrimp allergy, only 7.1% (2/28) had IgE to shrimp tropomyosin compared with 25% (7/28) who had IgE to shrimp and 35.7% (10/28) who had positive skin prick test responses to shrimp. Sensitivity was similar for all 3 methods (71.4%); in contrast, specificity of IgE to shrimp tropomyosin (92.8%) was greater than that of IgE to shrimp (75%) and skin prick testing (64.2%). With regard to diagnostic efficiency, measurement of IgE to shrimp tropomyosin was superior to measurement of IgE to shrimp and skin prick testing (88.5%, 74.2%, and 65.7%, respectively). Conclusion: Use of measurements of IgE to shrimp tropomyosin provided added value to the diagnosis of shrimp allergy. (J Allergy Clin Immunol 2010;125:872-8.)
Resumo:
Despite evidence linking shrimp farming to several cases of environmental degradation, there remains a lack of ecologically meaningful information about the impacts of effluent on receiving waters. The aim of this study was to determine the biological impact of shrimp farm effluent, and to compare and distinguish its impacts from treated sewage effluent. Analyses included standard water quality/sediment parameters, as well as biological indicators including tissue nitrogen (N) content, stable isotope ratio of nitrogen (delta N-15) and amino acid composition of inhabitant seagrasses, mangroves and macroalgae. The study area consisted of two tidal creeks, one receiving effluent from a sewage treatment plant and the other from an intensive shrimp farm. The creeks discharged into the western side of Moreton Bay, a sub-tropical coastal embayment on the east coast of Australia. Characterization of water quality revealed significant differences between the creeks, and with unimpacted eastern Moreton Bay. The sewage creek had higher concentrations of dissolved nutrients (predominantly NO3-/NO2- and PO43-, compared to NH4+ in the shrimp creek). In contrast, the shrimp creek was more turbid and had higher phytoplankton productivity. Beyond 750 m from the creek mouths, water quality parameters were indistinguishable from eastern Moreton Bay values. Biological indicators detected significant impacts up to 4 km beyond the creek mouths (reference site). Elevated plant delta N-15 values ranged from 10.4-19.6 parts per thousand at the site of sewage discharge to 2.9-4.5 parts per thousand at the reference site. The free amino acid concentration and composition of seagrass and macroalgae was used to distinguish between the uptake of sewage and shrimp derived N. Proline (seagrass) and serine (macroalgae) were high in sewage impacted plants and glutamine (seagrass) and alanine (macroalgae) were high in plants impacted by shrimp effluent. The delta N-15 isotopic signatures and free amino acid composition of inhabitant flora indicated that sewage N extended further from the creek mouths than shrimp N. The combination of physical/chemical and biological indicators used in this study was effective in distinguishing the composition and subsequent impacts of aquaculture and sewage effluent on the receiving waters. (C) 2001 Academic Press.
Resumo:
Effluent water from shrimp ponds typically contains elevated concentrations of dissolved nutrients and suspended particulates compared to influent water. Attempts to improve effluent water quality using filter feeding bivalves and macroalgae to reduce nutrients have previously been hampered by the high concentration of clay particles typically found in untreated pond effluent. These particles inhibit feeding in bivalves and reduce photosynthesis in macroalgae by increasing effluent turbidity. In a small-scale laboratory study, the effectiveness of a three-stage effluent treatment system was investigated. In the first stage, reduction in particle concentration occurred through natural sedimentation. In the second stage, filtration by the Sydney rock oyster, Saccostrea commercialis (Iredale and Roughley), further reduced the concentration of suspended particulates, including inorganic particles, phytoplankton, bacteria, and their associated nutrients. In the final stage, the macroalga, Gracilaria edulis (Gmelin) Silva, absorbed dissolved nutrients. Pond effluent was collected from a commercial shrimp farm, taken to an indoor culture facility and was left to settle for 24 h. Subsamples of water were then transferred into laboratory tanks stocked with oysters and maintained for 24 h, and then transferred to tanks containing macroalgae for another 24 h. Total suspended solid (TSS), chlorophyll a, total nitrogen (N), total phosphorus (P), NH4+, NO3-, and PO43-, and bacterial numbers were compared before and after each treatment at: 0 h (initial); 24 h (after sedimentation); 48 h (after oyster filtration); 72 h (after macroalgal absorption). The combined effect of the sequential treatments resulted in significant reductions in the concentrations of all parameters measured. High rates of nutrient regeneration were observed in the control tanks, which did not contain oysters or macroalgae. Conversely, significant reductions in nutrients and suspended particulates after sedimentation and biological treatment were observed. Overall, improvements in water quality (final percentage of the initial concentration) were as follows: TSS (12%); total N (28%); total P (14%); NH4+ (76%); NO3- (30%); PO43-(35%); bacteria (30%); and chlorophyll a (0.7%). Despite the probability of considerable differences in sedimentation, filtration and nutrient uptake rates when scaled to farm size, these results demonstrate that integrated treatment has the potential to significantly improve water quality of shrimp farm effluent. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Current shrimp pond management practices generally result in elevated concentrations of nutrients, suspended solids, bacteria and phytoplankton compared with the influent water. Concerns about adverse environmental impacts caused by discharging pond effluent directly into adjacent waterways have prompted the search for cost-effective methods of effluent treatment. One potential method of effluent treatment is the use of ponds or raceways stocked with plants or animals that act as natural biofilters by removing waste nutrients. In addition to improving effluent water quality prior to discharge, the use of natural biofilters provides a method for capturing otherwise wasted nutrients. This study examined the potential of the native oyster, Saccostrea commercialis (Iredale and Roughley) and macroalgae, Gracilaria edulis (Gmelin) Silva to improve effluent water quality from a commercial Penaeus japonicus (Bate) shrimp farm, A system of raceways was constructed to permit recirculation of the effluent through the oysters to maximize the filtration of bacteria, phytoplankton and total suspended solids. A series of experiments was conducted to test the ability of oysters and macroalgae to improve effluent water quality in a flow-through system compared with a recirculating system. In the flow-through system, oysters reduced the concentration of bacteria to 35% of the initial concentration, chlorophyll a to 39%, total particulates (2.28-35.2 mum) to 29%, total nitrogen to 66% and total phosphorus to 56%. Under the recirculating flow regime, the ability of the oysters to improve water quality was significantly enhanced. After four circuits, total bacterial numbers were reduced to 12%, chlorophyll a to 4%, and total suspended solids to 16%. Efforts to increase biofiltration by adding additional layers of oyster trays and macroalgae-filled mesh bags resulted in fouling of the lower layers causing the death of oysters and senescence of macroalgae. Supplementary laboratory experiments were designed to examine the effects of high effluent concentrations of suspended particulates on the growth and condition of oysters and macroalgae. The results demonstrated that high concentrations of particulates inhibited growth and reduced the condition of oysters and macroalgae. Allowing the effluent to settle before biofiltration improved growth and reduced signs of stress in the oysters and macroalgae. A settling time of 6 h reduced particulates to a level that prevented fouling of the oysters and macroalgae.
Resumo:
The fate of N-15-nitrogen-enriched formulated feed fed to shrimp was traced through the food web in shallow, outdoor tank systems (1000 1) stocked with shrimp. Triplicate tanks containing shrimp water with and without sediment were used to identify the role of the natural biota in the water column and sediment in processing dietary nitrogen (N). A preliminary experiment demonstrated that N-15-nitrogen-enriched feed products could be detected in the food web. Based on this, a 15-day experiment was conducted. The ammonium (NH4+) pool in the water column became rapidly enriched (within one day) with N-15-nitrogen after shrimp were fed N-15-enriched feed. By day 15, 6% of the added N-15-nitrogen was in this fraction in the 'sediment' tanks compared with 0.4% in the 'no sediment' tanks. The particulate fraction in the water column, principally autotrophic nanoflagellates, accounted for 4-5% of the N-15-nitrogen fed to shrimp after one day. This increased to 16% in the 'no sediment' treatment, and decreased to 2% in the 'sediment' treatment by day 15. It appears that dietary N was more accessible to the phytoplankton community in the absence of sediment. The difference is possibly because a proportion of the dietary N was buried in the sediment in the 'sediment' treatment, making it unavailable to the phytoplankton. Alternatively, the dietary N was retained in the NH4+ pool in the water column since phytoplankton growth, and hence, N utilization was lower in the 'sediment' treatment. The lower growth of phytoplankton in the 'sediment' treatment appeared to be related to higher turbidity, and hence, lower light availability for growth. The percentage N-15-nitrogen detected in the sediment was only 6% despite the high capacity for sedimentation of the large biomass of plankton detritus and shrimp waste. This suggests rapid remineralization of organic waste by the microbial community in the sediment resulting in diffusion of inorganic N sources into the water column. It is likely that most of the dietary N will ultimately be removed from the tank system by water discharges. Our study showed that N-15-nitrogen derived from aquaculture feed can be processed by the microbial community in outdoor aquaculture systems and provides a method for determining the effect of dietary N on ecosystems. However, a significant amount of the dietary N was not retained by the natural biota and is likely to be present in the soluble organic fraction. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Over the last 30 years, a number of Vibrio species found in the aquatic environment have been indicated as cause of disease in human beings. Vibrio vulnificus is an emergent pathogen, an invasive and lethal marine bacterium related to wound infection and held accountable for gastroenteritis and primary septicemia. It occurs quite frequently in marine organisms, mainly in mollusks. This study aimed at isolating and identifying strains of V. vulnificus based upon the analysis of twenty samples of seabob shrimp, Xiphopenaeus kroyeri (Heller), purchased at the Mucuripe fish market (Fortaleza, Brazil). TCBS agar was used to isolate suspect strains. Seven of twenty-nine strains isolated from six different samples were confirmed as such by means of biochemical evidence and thus submitted to biological assays to determine their virulence. The susceptibility of the V. vulnificus strains to a number of antibiotics was tested. None of the V. vulnificus strains showed signs of virulence during a 24-hour observation period, possibly due to the shedding of the capsules by the cells. As to the results of the antimicrobial susceptibility tests, the seven above-mentioned V. vulnificus strains were found to be sensitive to nitrofurantoin (NT), ciprofloxacin (CIP), gentamicin (GN) and chloramphenicol (CO) and resistant to clindamycin (CI), penicillin (PN) and ampicillin (AP).
Resumo:
Guava leaf tea of Psidium guajava Linnaeus is commonly used as a medicine against gastroenteritis and child diarrhea by those who cannot afford or do not have access to antibiotics. This study screened the antimicrobial effect of essential oils and methanol, hexane, ethyl acetate extracts from guava leaves. The extracts were tested against diarrhea-causing bacteria: Staphylococcus aureus, Salmonella spp. and Escherichia coli. Strains that were screened included isolates from seabob shrimp, Xiphopenaeus kroyeri (Heller) and laboratory-type strains. Of the bacteria tested, Staphylococcus aureus strains were most inhibited by the extracts. The methanol extract showed greatest bacterial inhibition. No statistically significant differences were observed between the tested extract concentrations and their effect. The essential oil extract showed inhibitory activity against S. aureus and Salmonella spp. The strains isolated from the shrimp showed some resistance to commercially available antibiotics. These data support the use of guava leaf-made medicines in diarrhea cases where access to commercial antibiotics is restricted. In conclusion, guava leaf extracts and essential oil are very active against S. aureus, thus making up important potential sources of new antimicrobial compounds.
Resumo:
Introduction In this study, we used dichloromethane (DCM) and methanol (MeOH) extracts of the Zingiber zerumbet rhizome to evaluate brine shrimp lethality and larvicidal activity on Aedes aegypti and Anopheles nuneztovari mosquitoes. Methods Bioassays were performed by exposing third-instar larvae of each mosquito species to the DCM or MeOH extracts. Results Probit analysis with DCM and MeOH extracts demonstrated efficient larvicidal activity against A. aegypti and A. nuneztovari larvae. Conclusions The DCM and MeOH extracts showed higher activity against A. nuneztovari larvae than against A. aegypti larvae, suggesting that the extracts have species-specific activity.
Resumo:
226 methanol and water extracts representing 74 mainly native plant species found in Amazonas State, Brazil, were tested at a standard concentration of 500 μg/mL for lethality towards larvae of the brine shrimp species Artemia franciscana. Several cytotoxic plant species were identified in this work: Aspidosperma marcgravianum, A. nitidum, Croton cajucara, Citrus limetta, Geissospermum argenteum, Minquartia guianensis, Piper aduncum, P. amapense, P. capitarianum, P. tuberculatum and Protium aracouchini. The results were analyzed within the context of the available traditional knowledge and uses for these plants.
Resumo:
The Pinnotheridae family is one of the most diverse and complex groups of brachyuran crabs, many of them symbionts of a wide variety of invertebrates. The present study describes the population dynamics of the pea crab Austinixa aidae (Righi, 1967), a symbiont associated with the burrows of the ghost shrimp Callichirus major (Say, 1818). Individuals (n = 588) were collected bimonthly from May, 2005 to September, 2006 along a sandy beach in the southwestern Atlantic, state of São Paulo, Brazil. Our data indicated that the population demography of A. aidae was characterized by a bimodal size-frequency distribution (between 2.0 and 4.0 mm and between 8.0 and 9.0 mm CW) that remained similar throughout the study period. Sex ratio does not differ significantly from 1:1 (p > 0.05), which confirms the pattern observed in other symbiontic pinnotherids. Density values (1.72 ± 1.34 ind. ap.-1) are in agreement with those found for other species of the genus. The mean symbiosis incidence (75.6%) was one of the highest among species of the Pinnotheridae family, but it was the lowest among the three studied species of the genus. Recruitment pattern was annual, beginning in May and peaking in July, in both years, after the peak of ovigerous females in the population (from March to May). Our findings describe ecological and biological aspects of A. aidae similar to those of other species of this genus, even from different geographic localities.
Resumo:
The freshwater prawns of the genus Macrobrachium Spence Bate, 1868 are widely distributed in rivers of tropical and subtropical regions and represent an interesting group with controversial taxonomy. The morphological characters traditionally used to separate species have shown a high intraspecific variation. Doubts about the status of M. birai Lobão, Melo & Fernandes, 1986, M. holthuisi Genofre & Lobão, 1978 and M. petronioi Melo, Lobão & Fernandes, 1986 have been arisen due to the high resemblance of the former two species with M. olfersi (Wiegmann, 1836), and the latter one with M. potiuna (Müller, 1880). Therefore, we performed a detailed morphological analysis of these species, including new characters not usually used in the species recognition. The present results here with molecular data lead us to conclude that M. birai and M. holthuisi are junior synonyms of M. olfersi, and M. petronioi is a junior synonym of M. potiuna. Considering these synonymies, 17 valid species are now reported for the Brazilian territory.
Resumo:
This study comprises the description of relative growth and sexual maturity of a population of Palaemon pandaliformis Stimpson, 1871 in Salsa River (Northeastern Brazil). Samples were collected monthly between September 2009 and August 2010. Females were larger, heavier, and showed a greater allometric coefficient (b) than male specimens. Only carapace length vs. pleura length in females presented a significant difference in the relative growth pattern, indicating a puberty moult. This relationship is strictly correlated to reproduction and its success rate in female shrimps. Estimated carapace length in 50% of mature females (CL50) was 4.53 mm. It was not possible to compare obtained CL50 results due to a lack of studies on this species. Comparison was based on the size of the smallest captured ovigerous female (3.81 CL mm), which is within the scope of recorded size for estuaries located in higher latitudes. This study reveals the lack of research on this genre in freshwater environments on a national and global scale.
Resumo:
Shrimps are produced in two different ways. They are fished in the sea (sometimes at the cost of turtle destruction) or they are "farmed" in ponds in coastal areas. Such aquaculture is increasing around the world as shrimps become a valuable item of world trade. Mangrove forests are sacrificed for commercial shrimp farming. This paper considers the conflict between mangrove conservation and shrimp exports in different countries.Who has title to the mangroves, who wins and who loses in this tragedy of enclosures? Which languages of valuation are used by different actors in order to compare the increase in shrimp exports and the losses in livelihoods and in environmental services? The economic valuation of damages is only one of the possible languages of valuation which are relevant in practice. Who has the power to impose a particular language of valuation?
Resumo:
Recrystallization rims are a common feature of zircon crystals that underwent metamorphism. We present a microstructural and microchemical study of partially recrystallized zircon grains collected in polymetamorphic migmatites (Valle d'Arbedo, Ticino, Switzerland). The rims are bright in cathodo-luminescence (CL), with sharp and convex contacts characterized by inward-penetrating embayments transgressing igneous zircon cores. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data and transmission electron microscopy (TEM) imaging indicate that the rims are chemically and microstructurally different from the cores. The rims are strongly depleted in REE, with concentrations up to two orders of magnitude lower than in the cores, indicating a significant loss of REE during zircon recrystallization. Enrichment in non-formula elements, such as Ca, has not been observed in the rims. The microstructure of zircon cores shows a dappled intensity at and below the 100 nm scale, possibly due to radiation damage. Other defects such as pores and dislocations are absent in the core except at healed cracks. Zircon rims are mostly dapple-free, but contain nanoscale pores and strain centers, interpreted as fluid inclusions and chemical residues, respectively. Sensitive high-resolution ion microprobe (SHRIMP) U-Pb ages show that the recrystallization of the rims took place >200 Ma ago when the parent igneous zircon was not metamict. The chemical composition and the low-Ti content of the rims indicate that they form at sub-solidus temperatures (550-650 degrees C). Recrystallization rims in Valle d'Arbedo zircon are interpreted as the result of the migration of chemical reaction fronts in which fluid triggered in situ and contemporaneous interface-coupled dissolution-reprecipitation mechanisms. This study indicates that strong lattice strain resulting from the incorporation of a large amount of impurities and structural defects is not a necessary condition for zircon to recrystallize. Our observations suggest that the early formation of recrystallization rims played a major role in preserving zircon from the more recent Alpine metamorphic overprint.
Resumo:
Polyphenisms, as opposed to polymorphism, refers to coexistence of several distinct phenotypes having a common genotype. Polyphenism can be selected for in unpredictable environments. Here we document and anlyse a case of siphenism in the north-European fairy shrinp Siphonophanes grubii (Dybowski), in relation to the temporary and unpredictable nature of its habitat. The active part of this species'life cycle usually consists of a single, short-lived, spring cohort. Here we report field observations on autumnal hatching and on a long-lived, overwintering cohort; we show that the winter cohort runs the risk of total failure, due to the pond freezing entirely or drying up during winter. If, however, environmental conditions allow winter survival, animals reach a larger size, reproduce for a longer time, and display higher fecundity, than do animals from the spring cohort. Laboratory experiments support the theory that these differences are purely phenotypic and dependent on temperatur. Using an analytical model adapted from Cohen (1966), we propose that the coexistence of both a winter and a spring cohort in the same ponds can be interpreted as a diversified bet-hedging strategy.