996 resultados para particulate emissions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diesel particulate matter (DPM), in particular, has been likened in a somewhat inflammatory manner to be the ‘next asbestos’. From the business change perspective, there are three areas holding the industry back from fully engaging with the issue: 1. There is no real feedback loop in any operational sense to assess the impact of investment or application of controls to manage diesel emissions. 2. DPM are getting ever smaller and more numerous, but there is no practical way of measuring them to regulate them in the field. Mass, the current basis of regulation, is becoming less and less relevant. 3. Diesel emissions management is generally wholly viewed as a cost, yet there are significant areas of benefit available from good management. This paper discusses a feedback approach to address these three areas to move the industry forward. The six main areas of benefit from providing a feedback loop by continuously monitoring diesel emissions have been identified: 1. Condition-based maintenance. Emissions change instantaneously if engine condition changes. 2. Operator performance. An operator can use a lot more fuel for little incremental work output through poor technique or discipline. 3. Vehicle utilisation. Operating hours achieved and ratios of idling to under power affect the proportion of emissions produced with no economic value. 4. Fuel efficiency. This allows visibility into other contributing configuration and environmental factors for the vehicle. 5. Emission rates. This allows scope to directly address the required ratio of ventilation to diesel emissions. 6. Total carbon emissions - for NGER-type reporting requirements, calculating the emissions individually from each vehicle rather than just reporting on fuel delivered to a site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Airborne particulate pollutant is considered to be one of the major harmful emissions produced by vehicle engines as it has been directly linked to serious health problems. Passengers spend long times at bus stations and may be exposed to high concentrations of pollution. Particle pollution at two bus stations in Brisbane, Australia were monitored. The two bus stations consisted of markedly different site geography and surroundings with one situated in a street canyon and the other elevated above ground level. The same flow of traffic operated through both stations. Real time measurements of ultrafine particle concentration, size distribution and meteorological conditions were carried out on the platform continuously over several days. The results showed that the particle number concentrations were significantly different at the two stations, suggesting that the layout of site geometry and surroundings was a dominant determining factor through the injection of fresh air into the station platforms and the rates of dilution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Environmental Kuznets Curve (EKC) hypothesises an inverse U-shaped relationship between a measure of environmental pollution and per capita income levels. In this study, we apply non-parametric estimation of local polynomial regression (local quadratic fitting) to allow more flexibility in local estimation. This study uses a larger and globally representative sample of many local and global pollutants and natural resources including Biological Oxygen Demand (BOD) emission, CO2 emission, CO2 damage, energy use, energy depletion, mineral depletion, improved water source, PM10, particulate emission damage, forest area and net forest depletion. Copyright © 2009 Inderscience Enterprises Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-thermal plasma (NTP) is a promising candidate for controlling engine exhaust emissions. Plasma is known as the fourth state of matter, where both electrons and positive ions co-exist. Both gaseous and particle emissions of diesel exhaust undergo chemical changes when they are exposed to plasma. In this project diesel particulate matter (DPM) mitigation from the actual diesel exhaust by using NTP technology has been studied. The effect of plasma, not only on PM mass but also on PM size distribution, physico-chemical structure of PM and PM removal mechanisms, has been investigated. It was found that NTP technology can significantly reduce both PM mass and number. However, under some circumstances particles can be formed by nucleation. Energy required to create the plasma with the current technology is higher than the benchmark set by the commonly used by the automotive industry. Further research will enable the mechanism of particle creation and energy consumption to be optimised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrafine particles are particles that are less than 0.1 micrometres (µm) in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH) study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children’s health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT) and multiple breath nitrogen washout test (MBNW) (to assess airway function), fraction of exhaled nitric oxide (FeNO, to assess airway inflammation), blood cotinine levels (to assess exposure to second-hand tobacco smoke), and serum C-reactive protein (CRP) levels (to measure systemic inflammation). A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physical and chemical properties of biofuels vary among various feedstocks and their subsequent conversions to fuels. The biofuels contain various amounts of oxygen, and this has a significant influence on exhaust emission. This oxygen content has been considered in order to investigate its effect on diesel engine exhaust emissions. The experiments have been conducted with a heavy duty diesel engine and various oxygenated fuels. It is found that the amount of oxygen in the fuel has a high level of influence on its exhaust emissions, and this provides agreement with diesel emissions results such as PN reduction. By increasing the amount of oxygen in the blend (by adding more biofuel), the particulate number (PN) is reduced and NOx increases gradually. However, the variation of PN and NOx are not similar for waste cooking biodiesel (WCBD) and butanol blend, even though their oxygen content are the same in the blends. This is due to the source of the biofuel and their internal chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative potential (OP) is related to the organic phase, specifically to its oxygenated organic fraction (OOA). Furthermore, the oxygen content of fuel molecules has significant influence on particulate OP. Thus, this study aimed to explore the actual dependency of the OOA and ROS to the oxygen content of the fuel. In order to reach the goal, different biodiesels blends, with various ranges of oxygen content; have been employed. The compact time of flight aerosol mass spectrometer (c-ToF AMS) enabled better identification of OOA. ROS monitored by using two assays: DTT and BPEA-nit. Despite emitting lower mass, both assays agreed that oxygen content of a biodiesel is directly correlated with its OOA, and highly related to its OP. Hence, the more oxygen included in the considered biodiesels, the higher the OP of PM emissions. This highlights the importance of taking oxygen content into account while assessing emissions from new fuel types, which is relevant from a health effects standpoint.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis contains three subject areas concerning particulate matter in urban area air quality: 1) Analysis of the measured concentrations of particulate matter mass concentrations in the Helsinki Metropolitan Area (HMA) in different locations in relation to traffic sources, and at different times of year and day. 2) The evolution of traffic exhaust originated particulate matter number concentrations and sizes in local street scale are studied by a combination of a dispersion model and an aerosol process model. 3) Some situations of high particulate matter concentrations are analysed with regard to their meteorological origins, especially temperature inversion situations, in the HMA and three other European cities. The prediction of the occurrence of meteorological conditions conducive to elevated particulate matter concentrations in the studied cities is examined. The performance of current numerical weather forecasting models in the case of air pollution episode situations is considered. The study of the ambient measurements revealed clear diurnal variation of the PM10 concentrations in the HMA measurement sites, irrespective of the year and the season of the year. The diurnal variation of local vehicular traffic flows seemed to have no substantial correlation with the PM2.5 concentrations, indicating that the PM10 concentrations were originated mainly from local vehicular traffic (direct emissions and suspension), while the PM2.5 concentrations were mostly of regionally and long-range transported origin. The modelling study of traffic exhaust dispersion and transformation showed that the number concentrations of particles originating from street traffic exhaust undergo a substantial change during the first tens of seconds after being emitted from the vehicle tailpipe. The dilution process was shown to dominate total number concentrations. Minimal effect of both condensation and coagulation was seen in the Aitken mode number concentrations. The included air pollution episodes were chosen on the basis of occurrence in either winter or spring, and having at least partly local origin. In the HMA, air pollution episodes were shown to be linked to predominantly stable atmospheric conditions with high atmospheric pressure and low wind speeds in conjunction with relatively low ambient temperatures. For the other European cities studied, the best meteorological predictors for the elevated concentrations of PM10 were shown to be temporal (hourly) evolutions of temperature inversions, stable atmospheric stability and in some cases, wind speed. Concerning the weather prediction during particulate matter related air pollution episodes, the use of the studied models were found to overpredict pollutant dispersion, leading to underprediction of pollutant concentration levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential adverse human health and climate impacts of emissions from UK airports have become a significant political issue, yet the emissions, air quality impacts and health impacts attributable to UK airports remain largely unstudied. We produce an inventory of UK airport emissions - including aircraft landing and takeoff (LTO) operations and airside support equipment - with uncertainties quantified. The airports studied account for more than 95% of UK air passengers in 2005. We estimate that in 2005, UK airports emitted 10.2 Gg [-23 to +29%] of NOx, 0.73 Gg [-29 to +32%] of SO2, 11.7 Gg [-42 to +77%] of CO, 1.8 Gg [-59 to +155%] of HC, 2.4 Tg [-13 to +12%] of CO2, and 0.31 Gg [-36 to +45%] of PM2.5. This translates to 2.5 Tg [-12 to +12%] CO2-eq using Global Warming Potentials for a 100-year time horizon. Uncertainty estimates were based on analysis of data from aircraft emissions measurement campaigns and analyses of aircraft operations.The First-Order Approximation (FOA3) - currently the standard approach used to estimate particulate matter emissions from aircraft - is compared to measurements and it is shown that there are discrepancies greater than an order of magnitude for 40% of cases for both organic carbon and black carbon emissions indices. Modified methods to approximate organic carbon emissions, arising from incomplete combustion and lubrication oil, and black carbon are proposed. These alterations lead to factor 8 and a 44% increase in the annual emissions estimates of black and organic carbon particulate matter, respectively, leading to a factor 3.4 increase in total PM2.5 emissions compared to the current FOA3 methodology. Our estimates of emissions are used in Part II to quantify the air quality and health impacts of UK airports, to assess mitigation options, and to estimate the impacts of a potential London airport expansion. © 2011 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to understand why emissions of Particulate Matter (PM) from Spark-Ignition (SI) automobiles peak during periods of transient operation such as rapid accelerations, a study of controlled, repeatable transients was performed. Time-resolved engine-out PM emissions from a modern four-cylinder engine during transient load and air/fuel ratio operation were examined, and the results could be fit in most cases to a first order time response. The time constants for the transient response are similar to those measured for changes in intake valve temperature, reflecting the strong dependence of PM emissions on the amount of liquid fuel in the combustion chamber. In only one unrepeatable case did the time response differ from a first order function: showing an overshoot in PM emissions during transition from the initial to the final steady state PM emission level. PM emissions during controlled, motored start-up experiments show a peak at start-up followed by a period during which emissions are either relatively constant or drift somewhat. When the fuel injection and ignition are shut off, PM emissions also peak briefly, but rapidly decay to low levels. Qualitative implications on the study and modeling of PM emissions during transient engine operation are discussed. Copyright © 1999 Society of Automotive Engineers, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Total air suspended particles (PM 100) collected from an urban location near a traffic line in Wuhan, China, were examined for estrogen using a recombinant yeast bioassay. Wuhan, located at the central part of China, is the fourth biggest city in China with 7 million populations. Today, Wuhan has developed into the biggest city and the largest traveling center of central China, becoming one of the important bases of industry, education and research. Wuhan is right at the confluent point of Yangzi River, the third longest river in the world, and its largest distributary Hanjiang, with mountains and more than 100 takes in downtown area. Therefore, by its unique landscape, Wuhan has formed clear four seasons with relatively long winter and summer and short spring and autumn. Foggy weather usually happen in early spring. The yeast line used in this assay stably expresses human estrogen receptor-alpha. Weak but clear estrogenic activities were detected in the organic phase of crude extracts of air particle materials (APM) in both sunny and foggy weather by 0.19-0.79 mug E2/gPM(100) which were statistically significantly elevated relative to the blank control responding from 20% to 50% of the maximum E2 response, and the estrogenic activity was much higher in foggy weather than in sunny weather. The estrogenic activities in the sub-fractions from chromatographic separation of APM sampled in foggy days were also determined. The results indicated that the responses of the fractions were obviously higher than the crude extracts. Since there is no other large pollution source nearby, the estrogenic material was most likely from vehicle emissions, house heating sources and oil fumes of house cooking. The GC/MS analysis of the PM100 collected under foggy weather showed that there were many phenol derivatives, oxy-PAHs and resin acids which have been reported as environmental estrogens. These results of the analysis of estrogenic potency in sunny and foggy weather in a subtropical city of China indicate that further studies are required to investigate the actual risks for the associated health and atmospheric system. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is concern in the Cross-Channel region of Nord-Pas-de-Calais (France) and Kent (Great Britain), regarding the extent of atmospheric pollution detected in the area from emitted gaseous (VOC, NOx, S02)and particulate substances. In particular, the air quality of the Cross-Channel or "Trans-Manche" region is highly affected by the heavily industrial area of Dunkerque, in addition to transportation sources linked to cross-channel traffic in Kent and Calais, posing threats to the environment and human health. In the framework of the cross-border EU Interreg IIIA activity, the joint Anglo-French project, ATTMA, has been commissioned to study Aerosol Transport in the Trans-Manche Atmosphere. Using ground monitoring data from UK and French networks and with the assistance of satellite images the project aims to determine dispersion patterns. and identify sources responsible for the pollutants. The findings of this study will increase awareness and have a bearing on future air quality policy in the region. Public interest is evident by the presence of local authorities on both sides of the English Channel as collaborators. The research is based on pollution transport simulations using (a) Lagrangian Particle Dispersion (LPD) models, (b) an Eulerian Receptor Based model. This paper is concerned with part (a), the LPD Models. Lagrangian Particle Dispersion (LPD) models are often used to numerically simulate the dispersion of a passive tracer in the planetary boundary layer by calculating the Lagrangian trajectories of thousands of notional particles. In this contribution, the project investigated the use of two widely used particle dispersion models: the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model and the model FLEXPART. In both models forward tracking and inverse (or·. receptor-based) modes are possible. Certain distinct pollution episodes have been selected from the monitor database EXPER/PF and from UK monitoring stations, and their likely trajectory predicted using prevailing weather data. Global meteorological datasets were downloaded from the ECMWF MARS archive. Part of the difficulty in identifying pollution sources arises from the fact that much of the pollution outside the monitoring area. For example heightened particulate concentrations are to originate from sand storms in the Sahara, or volcanic activity in Iceland or the Caribbean work identifies such long range influences. The output of the simulations shows that there are notable differences between the formulations of and Hysplit, although both models used the same meteorological data and source input, suggesting that the identification of the primary emissions during air pollution episodes may be rather uncertain.