988 resultados para partial melting


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Granulites from Huangtuling in the North Dabie metamorphic core complex in eastern China preserve rare mineralogical and mineral chemical evidence for multistage metamorphism related to Paleoproterozoic metamorphic processes, Triassic continental subduction-collision and Cretaceous collapse of the Dabieshan Orogen. Six stages of metamorphism are established, based on detailed mineralogical and petrological studies: (I) amphibolite facies (6.3–7.0 kbar, 520–550 °C); (II) high-pressure/high-temperature granulite facies (12–15.5 kbar, 920–980 °C); (III) cooling and decompression (4.8–6.0 kbar, 630-700 °C); (IV) medium-pressure granulite facies (7.7–9.0 kbar, 690–790 °C); (V) low-pressure/high-temperature granulite facies (4.0–4.7 kbar, 860–920 °C); (VI) retrograde greenschist facies overprint (1–2 kbar, 340–370 °C). The P–T history derived in this study and existing geochronological data indicate that the Huangtuling granulite records two cycles of orogenic crustal thickening events. The earlier three stages of metamorphism define a clockwise P–T path, implying crustal thickening and thinning events, possibly related to the assembly and breakup of the Columbia Supercontinent ca. 2000 Ma. Stage IV metamorphism indicates another crustal thickening event, which is attributed to the Triassic subduction/collision between the Yangtze and Sino–Korean Cratons. The dry lower crustal granulite persisted metastable during the Triassic subduction/collision due to lack of hydrous fluid and deformation. Stage V metamorphism records the Cretaceous collapse of the Dabieshan Orogen,possibly due to asthenosphere upwelling or removal of the lithospheric mantle resulting in heating of the granulite and partial melting of the North Dabie metamorphic core complex. Comparison of the Huangtuling granulite in North Dabie and the high-pressure (HP)–ultrahigh-pressure (UHP) metamorphic rocks in South Dabie indicates that the subducted upper (South Dabie) and lower (North Dabie) continental crusts underwent contrasting tectonometamorphic evolution during continental subduction–collision and orogenic collapse. High-pressure granulites are generally characterized by the absence of orthopyroxene. However, the Huangtuling felsic granulite rarely preserves the high-pressure granulite facies assemblage of garnet + orthopyroxene + biotite + plagioclase + K-feldspar + quartz. To investigate the effects of bulk rock composition on the stability of orthopyroxene-bearing, high-pressure granulite facies assemblages in the NCKFMASHTO (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) system, we constructed a series of P–T–X pseudosections based on the melt-reintegrated composition of the Huangtuling felsic high-pressure granulite. Our calculations demonstrate that the orthopyroxene-bearing, high-pressure granulite facies assemblages are restricted to low XAl [Al2O3/(Na2O + CaO + K2O + FeO + MgO + Al2O3) < 0.35, mole proportion] or high XMg [MgO/(MgO + FeO) > 0.85] felsic–metapelitic rock types. Our study also reveals that the XAl values in the residual felsic–metapelitic, high-pressure granulites could be significantly reduced by a high proportion of melt loss. We suggest that orthopyroxene-bearing high-pressure granulites occur in residual overthickened crustal basement under continental subduction–collision zones and arc–continent collision belts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The central-south Tibet is a part of the products of the continental plate collision between Eurasia and India. To study the deep structure of the study area is significant for understanding the dynamics of the continental-continental collision. A 3-D density model matched well with the observations in the central-south Tibet was proposed in this study. In addition, this study has also used numerical simulation method to prove that Quasi-Love (QL) wave is deduced by anisotropy variation but not by lateral heterogeneity. Meanwhile, anisotropy variation in the upper mantle of the Qiangtang terrane and Lhasa terrane is detected by the QL waves observed in recorded seismograms. Based on the gravity modeling, some results are summarized as follows: 1) Under the constrain of geometrical structure detected by seismic data, a 3-D density model and Moho interface are proposed by gravity inversion of the central-south Tibet. 2) The fact that the lower crustal densities are smaller than 3.2 g/cm3, suggests absence of eclogite or partial eclogitization due to delamination under the central-south Tibet. 3) Seismicity will be strong or weak in the most negative Bouguer gravity anomaly. So there is no a certain relationship between seismicity and Bouguer gravity anomaly. 4) Crustal composition are determined after temperature-pressure calibration of seismic P wave velocity. The composition of lower crust might be one or a mixture of: 1. amphibolite and greenschist facies basalt beneath the Qiangtang terrane; 2. gabbro-norite-troctolite and mafic granulite beneath the Lhasa terrane. Because the composition of the middle crust cannot be well constrained by the above data set, the data set published by Rudnick & Fountain (1995) is used for comparison. It indicated the composition of the middle crust is granulite facies and might be pelitic gneisses.Granulite facies used to be interpreted as residues of partial melting, which coincidences with the previous study on partial melting middle crust. Amphibolite facies are thought to be produced after delamination, when underplating works in the rebound of the lower crust and lithospheric mantle. From the seismology study, I have made several followed conclusions: 1) Through the numerical simulation experiment of surface wave propagating in heterogeneity media, we can find that amplitude and polarization of surface wave only change a little when considering heterogeneity. Furthermore, it is proved that QL waves, generated by surface wave scattering, are caused by lateral variation of anisotropy but not by heterogeneity. 2) QL waves are utilized to determine the variation of uppermost mantle anisotropy of the Tibetan plateau. QL waves are identified from the seismograms of the selected paths recorded by the CAD station. The location of azimuth anisotropy gradient is estimated from the group velocities of Rayleigh wave, Love wave and QL wave. It suggests that south-north lateral variation of azimuthal anisotropy locates in Tanggula mountain, and east-west lateral variation in the north of Gandese mountain with 85°E longitude and near the Jinsha river fault with 85°E longitude.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Duobuza copper deposit, newly discovered typical gold-rich porphyry copper deposit with superlarge potential, is located in the Tiegelong Mesozoic tectonic -magmatic arc of the southern edge of Qiangtang block and the northern margin of Bangonghu-Nujiang suture. Quartz diorite porphyrite and grandiorite porphyry, occurred in stock, are the main ore-bearing porphyries. As the emplacement of porphyry stock, a wide range of hydrothermal alteration has developed. Within the framework of the ore district, abundant hydrothermal magnetite developed, and the relationship between precipitation of copper and gold and hydrothermal magnetite seems much close. Correspondingly, a series of veinlets and network veinlets occurred in all alteration zones. Therefore, systematic research on such a superlarge high-grade Duobuza gold-rich porphyry copper deposit can fully revealed the metallogenic characteristics of gold-rich porphyry copper deposits in this region, establish metallogenetic model and prospecting criteria, and has important practical significance on the promotion of regional exploration. In addition, this research on it can enrich metallogenic theory of strong oxidation magma-fluid to gold-rich porphyry copper deposit, and will be helpful to understand the metallogenic characteristics in early of subduction of Gangdese arc stages and its entire evolution history of the Qinghai-Tibet Plateau, the temporal and spatial distribution of ore deposits and their geodynamics settings. Northern ore body of Duobuza copper deposit have been controlled with width (north-south) about 100 ~ 400 m, length (east-west) about 1400 m, dip of 200 °, angle of dip 65 °~ 80 °. And controlled resource amount is of 2.7 million tons Cu with grade 0.94% and 13 tons Au with 0.21g/tAu. Overall features of ore body are large scale, higher grade copper, gold-rich. Ore occurred in the body of granodiotite porphyry and quartz diorite porphyrite and its contact zone with wall rock. Through the detailed mapping and field work studies, some typies of alteration are identificated as follows: albitization, biotititation, sericitization, silication, epidotization, chloritization, carbonatization, illitization, kaolinization and so on. The range of alteration is more than 10km2. Wall alteration zone can be divided into potassic alteration, moderate argillization alteration, argillization, illite-hydromuscovite or propylitization from ore-bearing porphyry center outwards, but phyllic alteration has not well developed and only sericite-quartz veins occurred in local area. Moreover, micro-fracture is development in ore district , and correspondingly a series of veinlets are development as follows: biotite vein (EB type), K-feldspar-biotite-chalcopyrite-quartz vein, magnetite-antinolite-K-feldspar vein, quartz-chalcopyrite-magnetite veins (A-type), quartz-magnetite-biotite-K-feldspar vein, chalcopyrite veinlets in potassic alteration zone; (2) chalcopyrite occurring in the center vein–quartz vein (B type), chalcopyrite veinlets, chalcopyrite-gypsum vein in intermediate argillization alteration; (3) chalcopyrite- pyrite-quartz vein, pyrite-quartz vein, chalcopyrite-gypsum veins, quartz-gypsum- molybdenite-chalcopyrite vein in argillization alteration; (4) gypsum veins, quartz-(molybdenite)-chalcopyrite vein, quartz-pyrite vein, gypsum- chalcopyrite vein, potassium feldspar veinlets, Carbonate veins, quartz-magnetite veins in the wall rock. In short, various veins are very abundant within the framework of the ore district. The results of electronic probe microscopy analysis (EMPA) indicate that Albite (Ab 91.5~99.7%) occurred along the rim of plagioclase phenocryst and fracture, and respresents the earliest stages of alteration. K-feldspar (Or 75.1~96.9%) altered plagioclase phenocryst and matrix or formed secondary potassium feldspar veinlets. Secondary biotite occurred mainly in phenocryst, matrix and veinlets, belong to magnesium-rich biotite formed under the conditions of high-oxidation magma- hydrothermal. Chloritization developed in all alteration zones and alterd iron- magnesium minerals such as biotite and hornblende and then formed chlorite veinlets. As the temperature rises, Si in the tetrahedral site of chlorite decreased, and chlorite component evolved from diabantite to ripiolite. The consistent 280℃~360℃ of formation temperature hinted that chlorite formed on the same temperature range in all alteration zones. However, formation temperature range of chlorite from the gypsum-carbonate-chlorite vein was 190℃~220℃, and it may be the product of the latest stage of hydrothermal activity. The closely relationship between biotite and rutile indicate that most of rutiles are precipitated in the process of biotite alteration and recrystallization. In addition, the V2O3 concentration of rutile from ore body in Duobuza gold-rich porphyry copper deposit is >0.4%, indicate that V concentration in rutile has important significance on marking main ore body of porphyry copper deposit. Apatites from Duobuza deposit all are F-rich. And apatite in the wall rock contained low MnO content and relatively high FeO content, which may due to the basaltic composition of the wall rocks. The MnO in apatite from altered porphyry show a strong positive correlation with FeO. In addition, Cl/F ratio of apatite from wall rock was highest, followed by the potassic alteration zone and potassic alteration zone overprinted by moderate argillization alteration was the lowest. SO2 in Apatite are in the scope of 0 to 0.66%, biotite in the apatite has the highest SO2, followed by the potassic alteration zone, potassic alteration zone overprinted by moderate argillization alteration, and the lowest in the surrounding rocks, which may be caused by the decrease of oxygen fugacity of hydrothermal fluid and S exhaust by sulfide precipitation in potassic alteration. Magnetite in the wall rock have higher Cr2O3 and lower Al2O3 features compared with altered porphyry, this may be due to basalt wall rock generally has high Cr content. And magnetites have higher TiO2 content in potassic alteration than moderate argillization alteration overprinted by potassic alteration, argillization and wall rock, suggested that its formation temperature in potassic alteration was the highest among them. The ore minerals mainly are chalcopyrite and bornite, and Au contents of chalcopyrite, bornite, and pyrite are similar with chalcopyrite slightly higher. The Eu* negative anomaly of disseminated chalcopyrite was relatively lower than chalcopyrite in veinlets. Within a drill hole, the Eu* negative anomaly of disseminated chalcopyrite was gradually larger from bottom to top. Magnetite has the same distribution model, with obvious negative Eu* abnormal, and ΣREE in great changes. The gypsum has the highest ΣREE content and the obvious negative anomaly, and biotite obviously has the Eu* abnormal. Based on the petrographic and geochemical characteristics, five series of magmatic rocks can be broadly classified; they are volcanic rocks of the normal island arc, high-Nb basaltic rocks, adakites, altered porphyry and diorite. The Sr, Nd, Hf isotopes and geochemistry of various series of magmatic rock show that they may be the result of mixing between basic magma and various degrees of acid magma coming from lower crust melted by high temperature basic underplating from partial melting of the subduction sediment melt metasomatic mantle wedge. Furthermore S isotope and Pb isotope of the sulfide, ore-bearing porphyries and volcanic rocks indicated ore-forming source is the mantle wedge metasomatied by subduction sediment melt. Oxygen fugacity of magma estimated by Fe2O3/FeO of whole rock and zircon Ce4+/Ce3+ indicated that the oxidation of basalt-andesitic rocks is higher than ore-forming porphyry, and might imply high-oxidation characteristics of underplated basic magma. Its high oxidative mechanism is likely mantle sources metasomatied by subduction sediment magma, including water and Fe3+. And such high oxidation of basaltic magma is conducive to the mantle of sulfides in the effective access to melt. And the An component of dark part within plagioclase phenocryst zoning belong to bytownite (An 74%), and its may be a result of magma composition changes refreshment by basaltic magma injection. SHRIMP zircon U-Pb and LA-ICP-MS zircon U-Pb geochronology study showed that the intrusions and volcanic rocks from Duobuza porphyry copper deposit belong to early Cretaceous magma series (126~105Ma). The magma evolution series are as follows: the earliest diorite and diorite porphyrite → ore-bearing porphyry and barren grandiorite porphyry →basaltic andesite → diorite porphyrite → andesite → basaltic andesite, and magma component shows a evolution trend from intermediate to intermediate-acid to basic. Based on the field evidences, the formation age of high-Nb basalt may be the latest. The Ar-Ar geochronology of altered secondary biotite, K-feldspar and sericite shows that the main mineralization lasting a interval of about 4 Ma, the duration limit of whole magma-hydrothermal evolution of about 6 Ma, and possibly such a long duration limit may result in the formation of Duobuza super-large copper deposit. Moreover, tectonic diagram and trace element geochemistry of volcanic rocks and diorite from Duobuza porphyry copper deposit confirm that it formed in a continental margin arc environment. Zircon U-Pb age of volcanic rocks and porphyry fall in the range of 105~121Ma, and Duobuza porphyry copper deposit locating in the north of the Bangonghu- Nujiang suture zone, suggested that Neo-Tethys ocean still subducted northward at least early Cretaceous, and its closure time should be later than 105 Ma. Three major inclusion types and ten subtypes are distinguished from quartz phenocrysts and various quartz veins. Vapor generally coexisting with brine inclusions, suggest that fluid boiling may be the main ore-forming mechanism. Raman spectrums of fluid inclusions display that the content of vapor and liquid inclusion mainly contain water, and vapor occasionally contain a little CO2. In addition, the component of liquid inclusions mainly include Cl-, SO42-, Na+, K+, a small amount of Ca2+, F-; and Cl- and Na+ show good correlation. Vapor mainly contains water, a small amount of CO2, CH4 and C2H6 and so on. The daughter minerals identified by Laman spectroscopy and SEM include gypsum, chalcopyrite, halite, sylvite, rutile, potassium feldspar, Fe-Mn-chloride and other minerals, and ore-forming fluid belong to a complex hydrothermal system containing H2O-NaCl-KClFeCl2CaCl2. H and O isotopic analysis of quartz phenocryst, vein quartz, magnetite, chlorite and gypsum from all alteration zones show that the ore-forming fluid of Duobuza gold-rich porphyry copper deposit consisted mainly of magmatic water, without addition of meteric water. Duobuza gold-rich porphyry copper deposit formed by the primary magmatic fluid (600-950C), which has high oxidation, ultra-high salinity and metallogenic element-rich, exsolution direct from the magma, and it is representative of the typical orthomagmatic end member of the porphyry continuum. Moreover, the fluid evolution model of Duobuza gold-rich porphyry copper deposit has been established. Furthermore, two key factors for formation of large Au-rich porphyry copper deposit have been summed up, which are ore-forming fluids earlier separated from magma and high oxidation magma-mineralization fluid system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extensive high to ultrahigh pressure metamorphic rocks are outcropped in the the Dabie-Sulu UHP orogenic belt. Disputes still exist about for protolith nature of metamorphic rocks, petrogenesis, tectonic setting, and influence on upper mantle during the Triassic deep subduction. In this study, a combined study of petrology, geochemistry, isotope geochemistry and zircon chronology was accomplished for high-grade gneisses in the basement of the ultrahigh-pressure metamorphic Rongcheng terrane to reveal protolith nature and petrogenesis of the gneisses and to disucss the magmatic succession along the northern margin of the Yangtze block in Neoproterozoic. Gneisses in the Rongcheng terrane are characterized by negative Nb, Ta, P and Ti anomalies, relatively low Sr/Y ratios and relatively high Ba/La, Ba/Nb and Ba/Zr ratios, mostly displaying geochemical affinity to Phanerozoic volcanic arc. Neoproterozoic protolith ages (0.7 ~ 0.8 Ga) and Paleoproterozoic average crustal residence time (1.92 ~ 2.21 Ga) favour a Yangtze affinity. The gneisses mostly display characteristics of enrichment of LREE, flat heavy rare earth elements (REE) patterns, moderately fractionation between LREE and HREE and slight negative or positive Eu anomalies, probably reflecting that melting took place in the middle to low crust (26 ~ 33 km), where amphibole fractionated from the melts and/or inherited from source material as major mineral phases in the source area. Sr-Nd isotopic composition of the gneisses supports this conclusion. According to εNd(t) and εHf(t) values, the gneisses can be divided into three groups. Gneisses of group I have the highest εNd(t) and εHf(t) values, corresponding to the range of -6 ~ -3 and -2.9 ~ 13.4, respectively. This suggests obvious influx of depleted mantle or juvenile crust in the formation of protoliths. Gneisses of group II have medium εNd(t) (-9 ~ -7) and εHf(t) values (-15.8 ~ -1.4), corresponding to relatively high TDM2(Nd) (1.99 ~ 2.31 Ga) and TDM2(Hf) (1.76 ~ 2.67 Ga) , respectively. This suggests these gneisses were formed by partial melting of Paleoproterozoic crust. Gneisses of group III have the lowest εNd(t) (-15 ~ -10) and εHf(t) values (-15.8 ~ -1.4), corresponding to the largest TDM2(Nd) (1.99 ~ 2.31 Ga) and TDM2(Hf) ( 1.76 ~ 2.67 Ga), respectively. This indicates that gneisses of group III were formed by remelting of Archean crustal material and further demonstrates existence of an Archean basement probably of the Yangtze affinity beneath the Rongcheng terrane. Gneisses of three groups have also certain different geochemical characteristics. Contents of REEs and trace elements reduce gradually from group I to group III. Zirconium saturation temperatures also show similar tendency. Compared to gneisses of group II and group III, gneisses of group I display geochemical feature similar to extensional tectonic setting, having relatively little influence by the source area. Therefore, geochemical characteristics for gneisses of group I can indictate that the protoliths of the Rongcheng gneisses formed in an extensional rifting tectonic setting. This conclusion is supported by the results of eclogites and gabbros previously reported in the Dabie-Sulu orogenic belt. Statistical results of the protolith ages of the Rongcheng gneisses show two age peaks around ~728 Ma and ~783 Ma with an about 50 Ma gap. Extensive magatism in abou 750 Ma along the northern margin of the Yangtze block can hardly be observed in the Rongcheng terrane. This phenomenon likely suggests discontinuous Neoproterozoic magmatism along the northern margin of the Yangtze block.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Beishan orogenic collage locates at the triple-joint among Xinjiang, Gansu, and Inner Mongolia Provinces, at which the Siberian, Tarim and North China plates join together. It also occupies the central segment of the southern Central Asian Orogenic Belt (CAOB). The main study area in the present suty focused on the southwest part of the Beishan Mountain, which can be subdivided into four units southernward, the Mazhongshan continental block, Huaniushan Arc, Liuyuan suture zone and Shibanshan-Daqishan Arc. 1. The Huaniushan Arc was formed by northernward dipping subduction from the Orcovician to Permian, in which volcanic rocks ranging from basic to acidic with island arc affinity were widely developed. The granitiod intrusions become smaller and younger southward, whichs indicates a southward rollback of slab. The granitiod intrusions are mainly composed of I type granites, and their geochemical compositions suggest that they have affinities of island arc settings. In the early Paleozoic(440Ma-390Ma). The Shibanshan-Daqishan Arc, however, were produced in the southernward dipping subduction system from Carboniferous to Permian. Volcanic rocks from basic to acidic rocks are typical calcic-alkaline rocks. The granitiod intrusions become smaller and younger northernward, indicating subdution with a northernward rollback. The granitiod intrusions mainly consist of I-type granites, of which geochemical data support they belong to island arc granite. 2. Two series of adakite intrusions and eruptive rocks have been discovered in the southern margin of the Huaniushan Island Arc. The older series formed during Silurian (441.7±2.5Ma) are gneiss granitoid. These adakite granites intruded the early Paleozoic Liuyuan accretionary complex, and have the same age as most of the granite intrusions in the Huanniushan Arc. Their geochemical compostions demonstrate that they were derived from partial melting of the subudcted oceanic slab. These characteristics indicate a young oceanic crust subduction in the early Paleozoic. The late stage adakites with compositons of dacites associate with Nb-enriched basalts, and island arc basalts and dacites. Their geochemistries demonstrate that the adakites are the products of subducted slab melts, whereas the Nb-enriched basalt is products of the mantle wedge which have metasomatized by adakite melts. Such a association indicates the existences of a young ocean slab subduction. 3. The Liuyuan suture zone is composed of late Paleozoic ophiolites and two series of accretionary complexes with age of early Paleozoic. The early Paleozoic accretionary complex extensively intruded by early Palozioc granites is composed of metamorphic clastics, marble, flysch, various metamorphic igneous rocks (ultramafic, mafic and dacite), and eclogite blocks, which are connected by faults. The original compositions of the rocks in this complex are highly varied, including MORB, E-MORB, arc rocks. Geochronological study indicates that they were formed during the Silurian (420.9±2.5Ma and 421.1±4.3Ma). Large-scale granitiods intruded in the accretionary complex suggest a fast growth effect at the south margin of the Huaniushan arc. During late Paleozoic, island arc were developed on this accretionary complex. The late Paleozoic ophiolite has an age of early Permian (285.7±2.2Ma), in which the rock assemblage includes ultra-mafic, gabbros, gabbros veins, massive basalts, pillow basalt, basaltic clastic breccias, and thin layer tuff, with chert on the top.These igneous rocks have both arc and MORB affinities, indicating their belonging to SSZ type ophiolite. Therefore, oceanic basins area were still existed in the Liuyuan area in the early Permian. 4. The mafic-ultramafic complexes are distributed along major faults, and composed of zoned cumulate rocks, in which peridotites are surrounded by pyroxenite, hornblendites, gabbros norite and diorite outward. They have island-arc affinities and are consistent with typical Alaska-type mafic-ultramafic complexes. The geochronological results indicate that they were formed in the early Permian. 5. The Liuyuan A-type granite were formed under post-collisional settings during the late Triassic (230.9±2.5Ma), indicating the persistence of orogenic process till the late Triassic in the study area. Geochronological results suggested that A-type granites become younger southward from the Wulungu A-type granite belt to Liuyuan A-type granite belt, which is in good agreement with the accretionary direction of the CAOB in this area, which indicate that the Liuyuan suture is the final sture of the Paleo-Asin Ocean. 6. Structural geological evidence demonstrate the W-E spreading of main tectonic terrenes. These terrenes had mainly underwent through S-N direction contraction and NE strike-faulting. The study area had experienced a S-N direction compression after the Permian, indicating a collisional event after the Permian. Based on the evidene from sedimentary geology, paleontology, and geomagnetism, our studies indicate that the orogenic process can be subdivided into five stages: (1) the pre-orogenic stage occurred before the Ordovicain; (2) the subduction orogenic stage occurred from the Orcovician to the Permian; (3) the collisional orogenic stage occurred from the late Permian to the late Triassic; (4) the post-collision stage occurred after the Triassic. The Liuyuan areas have a long and complex tectonic evolutional history, and the Liuyuan suture zone is one of the most important sutures. It is the finally suture zone of the paleo-Asian ocean in the Beishan area.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hersai porphyry copper deposit(PCD) of eastern junggar, newly discovered copper deposit, is located at the eastern segment of the Xiemisitai-Kulankazigan-Zhifang-Qiongheba Paleozoic island arc, Eastern Junggar. The Hersai PCD is developed in a intrusive complex, characterized by intensive and multiform hydrothermal alteration, including potassic alteration, silification, chloritization,sericitization,kaolinitization and carbonatization. Granodiorite, grandiorite porphyry, granite and concealed explosion breccia are hosts of the ore bodies containing veinlet and disseminated ore. Ore-bearing granite (ZK107-1-9), granodiorite (ZK107-1-9) and Ore-barren granodiorite (HES2-1) are selected to date zircon U-Pb age by SHRIMP method, and have an age of 429.4±6.4Ma ,413.0±3.4Ma and 411.1±4.8Ma, respectively, showing that they were emplaced from Late Silurian to Early Devonian. In addition, sample ZK107-1-9 has some hydrothermal zircons with a weighted mean 206Pb/238U age of 404.9±3.7Ma which is interpreted to be related to the granodiorite porphyry. Re-Os dating of five molybdenite samples yielded a weighted average model age of 408.0±2.9Ma, indicating the metallogenic epoch of the Hersai PCD. The ore-forming age is close to the petrogenic time of garnodiorite (411-413Ma), this suggests the ore-forming porphyry is most possiblely granodiorite porphyry. Systematic major - trace elements and Rb-Sr-Sm-Nd-Pb-Hf isotopic characteristics were studied. Analysis results show that these intrusives have some interesting and special characteristics, as following:1) containing both calc-alkaline rocks and high potassium calc-alkaline rocks ; 2) have some characteristics of adakite, but not totally, such as much lower La/Yb ratios and no Eu anomaly or just faint Eu anomaly; 3) have an initial 87Sr/86Sr ratios(0.703852-0.704565) similar to that of BSE, positive εNd(t) values between 6.1 and 7.4, the initial 206Pb/204Pb values (17.576-17.912), 207Pb/204Pb values (15.400-15.453) , 208Pb/204Pb values (37.252-37.466) , and high εHf(t) values (10.2-15.4) close to the value of depleted mantle. These geochemical features suggest that these igneous rocks in the Hersai area not only have some characteristics of island arc, but also some characteristics that only appear in the continental margin arc. It is suggested that Hersai PCD is formed in the subduction setting by the partial melting of young crust. These works and advancements mentioned in the paper are helpful to understand the deposit geology, geochemistry and metallogenesis of Hersai PCD. It is also significant to understand mineralization and tectonic setting in the Qiongheba area.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mafic-ultramafic complex belt well developed in Eastern Tianshan, Xinjiang, NW China, which contains a series of Cu-Ni sulfide deposits. This area is the important production basis for Cu-Ni deposits, including Tulargen deposit, Hulu deposit, Huangshan-Huangshandong deposit, Hulu deposit, Xiangshan deposit, Tianyu deposit, Chuanzhu deposit. In China, especially Eastern Tianshan, it is prevalent that large Cu-Ni deposits occurred in small intrusions, typically including Jinchuan, Kalatongke, et al., so the ore-forming mechanism and evaluation rule for those small intrusions are very meaningful and of universal significance. On the basis of the research to typical Cu-Ni deposits, ore-forming conditions and processes are summarized through which to evaluate the ore-bearing potential for barren intrusions and unexplored mafic-ultramafic intrusions. By the contrast, metallogenic rule and mechanism of ore genesis are concluded, and evaluation system is preliminarily set up on the basis of these conclusions. Quantitatively simulation for the composition of olivine is introduced for the first time in China to discuss the interaction between magma and sulfide, and a new method to calculate the Mg-Fe composition of primitive magma is developed. Interaction between magma and sulfide liquid is used to get the Ni content in sulfide liquid. Sulfur isotopic characteristics in sulfide minerals in country rocks and ores are used to judge crustal sulfur introduction, which is applied for the first time in China. Re-Os isotopic characteristics are related to the ore-forming process, to interpret the process of enrichment of chalcophile elements. On the basis of the evaluation system, Mati, Chuanzhu, Luodong, Xiadong, those intrusions are evaluated to their ore-bearing potential. According to the studies to typical Cu-Ni deposits, conduit-type ore-forming model is set up, and the characteristics of the model are concluded systematically. The evaluation system and conduit-type ore-forming model can be helpful to the evaluation of mafic-ultramafic intrusions in this and similar mafic-ultramafic intrusion belts. The studied typical deposits and mafic-ultramafic intrusion include Tulargen deposit, Hulu deposit, Huangshandong deposit, Chuanzhu deposit, Mati intrusion,Luodong intrusion, Xiadong intrusion, and others. Through studies, there are similar characteristics for Tulargen and Hulu deposits in magma origin, composition of primitive magma(MgO=12.5%, FeO=12% and MgO=11%, FeO=10.5% respectively), magma evolution, mechanism of sulfide segregation and conduit-type ore-forming process. By Re-Os isotopic system, the ore forming date of Tulargen deposit is 265.6±9.2Ma, which is consistent to regional metallogenic event, but little younger. The Mg-Fe composition of primitive magma of Baishiquan, Huangshandong area, Kalatongke is lower than that of Tulargen and Hulu deposit, showing common basalt composition. The Mg# value(Mg#=(Mg/Mg+Fe)increases gradually from Kalatongke to Baishiquan to Huangshan-Huangshandong East. Baishiquan intrusions show relatively higher crustal contamination by evidence of trace element, which indicates the lower magma original source, from depleted mantle to crust. One break is the discovery of komatiitic intrusion, Xiadong intrusion, which shows characteristics of highly magnesium (Max Fo=96). The primitive magma is calculated of MgO=28%,FeO=9%, belonging to komatiitic magma. Tectonic evolution of Eastern Tianshan is discussed. By the statistics of ore-forming data of porphyry copper deposits, magmatic sulfide Cu-Ni deposits, orogenic hydrothermal gold deposits, we believe that those deposits are the successive products of oceanic subduction, are and back-arc basin collision and post-orogenic extention. And Cu-Ni sulfide deposits and orogenic gold deposits occurred in the stage of post-orogenic extention. According to the conclusions, the conduit-type ore-forming mechanism of magmatic sulfide deposit is set up, and its characteristics and conditions are concluded as well. The conduit-type ore-forming system includes magma generation, sulfide segregation, enrichment of chalcophile elements, interaction of sulfide and magma, sulfide collection in limited space in magma conduit and bottom of the chamber, which make a whole ore-forming system.The ore-forming process of Cu-Ni sulfide deposits is concluded as three steps: 1. mantle derived magma rises upward to the middle-upper crust; 2. magma suffers crustal contamination of different degrees and assimilates crustal sulfur, which leads to sulfur saturation and sulfide segregation. Sulfide liquid interacts with magma and concentrates chalcophile elements; 3. enriched sulfide located in the conduit(Tulargen) or bottom of the chamber (Hulu). Depleted magma rises upward continuously to form barren complexes. For the practical cases, Tulargen deposit represents the feeding conduit, and Hulu deposit represents the bottom of the staging magma chamber. So the deeper of west of Tulargen and southwest of Hulu are the favorite locate for ore location. The evaluation for ore potential can be summarized as follows: (1) Olivine can be served as indicator for magma evolution and events of sulfide segregation; (2) Sulfur isotopic characteristics is an efficient method to judge sulfur origin for magmatic sulfide deposit; (3) Re-Os content of the ores can indicate interaction between sulfide and silicate magma and crustal contamination; (4) PGE mineralization is effected by degree of partial melting of mantle; (5) Cu/Zr is efficient parameter to judge sulfide segregation; (6) The effects of multiple magma fractionation and emplacement are important, for inverse order shows the destruction to previous solid lithofacies and orebodies. Mati, Chuanzhu, Xiadong, Luodong, mafic-ultramafic intrusions are evaluated using evaluation system above. Remarkable Ni depletion is found in olivine of Mati, and southwest of the intrusion can be hopeful location for ore location. Chuanzhu intrusion has remarkable evidence of sulfide segregation, but the intrusion represents the narrow feeder conduit, so the wide part of the conduit maybe the favorite location for sulfide to deposit. The ore potential of Luodong and Xiadong is not good. Both the intrusions show no Ni depletion in olivine, and there is no sulfide in country rocks, so no crustal sulfur is added into the magmatic system. For Sidingheishan, a very large intrusion, the phenomenon of sulfide segregation is found, but there are no favorite places for sulfide to deposit. So the Cu-Ni ore potential maybe not good, but PGE mineralization should be evaluated further.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The petrology and geochemistry of peridotites entrained in Beiyan Cenozoic alkaline basalts within the middle segment of Tan-Lu fault zone and clinopyroxene megacrysts in the late Mesozoic and Cenozoic alkaline basaltic rocks from the North China Craton, have been systematically investigated. The main conclusions are obtained as follows. The peridotites entrained in alkaline basalts at Beiyan, Shandong Province, China are comprised of dominantly spinel lherzolites and spinel wehrlites with porphyroclastic, granuloblastic textures to resorption textures. The xenoliths are fertile in major element compositions (High CaO, TiO2, Low MgO, Cr2O3). The olivine Fo (= 100×Mg / (Mg+Fe) possesses a low and very large range of 81.0 to 91.0. The peridotites contain high percentages (Lherzolites: 10 - 19% in volume; Wehrlites: 24 - 28% in volume) of clinopyroxene with spongy textures. The Sr and Nd isotopic ratios of clinopyroxene separates from peridotites and pyroxenite xenoliths have a depleted and small range fall within the area of MORB, similar to newly-accreted lithospheric mantle. However, the appearance of many wehrlites and highly enriched LREE pattern suggest that this newly-accreted lithospheric mantle was considerably modified and reconstructed recently through the peridotite-asthenospheric melt interaction. The upwelling of asthenosphere from late Cretaceous to Eogene and upper mantle shearing of the Tan-Lu fault played an important role in the modification and reconstruction of the newly-accreted lithospheric mantle. The clinopyroxene megacrysts in the late Mesozoic and Cenozoic alkaline basaltic rocks from the eatern North China Craton are different in aspects of major elements, trace elements and isotopic composition. The characteristics of texture, mineral compositions and geochemistry as well as the Fe-Mg partitioning between the crystal and the melt indicates that the Al-augites in the Cenozoic basalts represent high-pressure crystallization products of alkaline basaltic melts. Thus, both of clinopyroxene megacrysts and host basalts could be derived from a same primitive magma. However, the Al-augites in the late Mesozoic basaltic rocks represent accidentally-included xenocrysts of basaltic components which had crystallized in the depth from a previously melting episode. The more depleted Sr-Nd isotopic compositions of Cenozoic megacrysts compared with those of host alkaline basalts and tholeiites demonstrate that even the alkali basalts could not completely represent primitive magma initiating in asthenosphere. That is to say, the Cenozoic alkaline basalts were more or less modified by some enriched Sr-Nd isotopic components during their eruption. Meanwhile, the tholeiites were not the products formed only by fractional crystallization of alkaline basaltic magma or different degrees of partial melting. It may result from the contribution of lithospheric mantle materials or crust contamination in magma chamber to alkali basaltic magmas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Post-collisional, potassic igneous rocks are widely distributed in the Hoh Xil area of the northern Tibetan Plateau. Based on the field work, petrography, mineral chemistry, K-Ar geochronology, element and Sr-Nd-Pb isotope geochemistry, this thesis systematically studied the spatial and temporal distribution of the volcanic rocks, chemical characteristics, formation mechanism and partial melting mechanism of the magma source region, geodynamic setting of magmatism, as well as crustal assimilation and fractional crystallization (AFC). The results show that: 1. The Miocene (7.77-17.82 Ma) volcanic products dominantly are trachandesite and trachy, and subordinate rhyolites, associated with stike-slip faults and thrust faults, formed morphology of small lava platforms and cinder cones. 2. Phenocrysts in the lavas are augite, andesine, sanidine, calcic amphibole and subordinate orthopyroxene, biotite and Ti-Fe oxides, displaying typical quench texture. Equilibrium temperatures and pressures of clinopyroxene phenocrysts indicate the magma chamber is located in upper-middle crust. 3. Rhyolites are the products of crustal melting and fractionation of shoshonitic magmas. The source region of intermediate magmas is enriched continental lithospheric mantle, which contains residual minerals such as phlogopite, rutile and spinel, and enriched by subducted sediments during earlier multi-episodes of subduction. 4. Upwelling of asthenosphere provides heat for source region melting, and faults provide channels for magma eruption. 5. Northward underthrusting of Indian continental lithosphere and southward of backstop of Asian continental lithosphere resulted in upwelling of hot asthenosphere. Geochemical characteristics of the potassic magmatism in North Tibet are dominantly controlled by source region composition, partial melting, and crustal assimilation and fractional crystallization (AFC).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Eastern Himalayan Syntaxis (EHS) is one of the strongest deformation area along the Himalayan belt resulted from the collision between Indian plate and the Eurasian Plate since the 50~60Ma, and has sensitivity tracked and preserved the whole collisional processes. It should depend on the detail geological investigations to establish the deformational accommodate mode, and the uplift history, to elucidate the deep structure and the crust-mantle interaction of the Tibet Plateau of the EHS. The deep-seated (Main Mantle Thrusts) structures were exhumed in the EHS. The MMT juxtapose the Gangdese metamorphic basement and some relic of Gangdese mantle on the high Himalayan crystalline series. The Namjagbawa group which is 1200~1500Ma dated by U/Pb age of zircon and the Namla group which is 550Ma dated by U/Pb age of zircon is belong to High Himalayan crystalline series and Gangdese basement respectively. There is some ophiolitic relic along the MMT, such as metamorphic ocean mantle peridotite and metamorphic tholeiite of the upper part of ocean-crust. The metamorphic ocean mantle peridotites (spinel-orthopyroxene peridotite) show U type REE patterns. The ~(87)Sr/~(86)Sr ratios were, 0.709314~0.720788, and the ~(143)Nd/~(144)Nd ratios were 0.512073~0.512395, plotting in the forth quadrant on the ~(87)Sr/~(86)Sr-~(143)Nd/~(144)Nd isotope diagram. Some metamorphic basalt (garnet amphibolite) enclosures have been found in the HP garnet-kynite granulite. The garnet amphibolites can be divided two groups, the first group is deplete of LREE, and the second group is flat or rich LREE, and their ~(87)Sr/~(86)Sr, ~(143)Nd/~(144)Nd ratios were 0.70563~0.705381 and 0.512468~0.51263 respectively. Trace element and isotopic characteristics of the garnet amphibolites display that they formed in the E-MORB environment. Some phlogolite amphibole harzburgites, which exhibit extensive replacement by Phl, Amp, Tc and Dol etc, were exhumed along the MMT. The Phl-Amp harzburgites are rich in LREE and LILE, such as Rb, K etc, and depletes Eu (Eu~* = 0.36 ~ 0.68) and HFSE, such as Nb, Ta, Zr, Hf, P, Ti etc. The trace element indicate that the Phl-Amp harzburgites have island arc signature. Their ~(87)Sr/~(86)Sr are varied from 0.708912 to 0.879839, ~(143)Nd/~(144)Nd from 0.511993 to 0.512164, ε Nd from- 9.2 to - 12.6. Rb/Sr isochrone age of the phlogolite amphibole harzburgite shows the metasomatism took place at 41Ma, and the Amp ~(40)Ar/~(39)Ar cooling age indcate the Phl-Amp harzburgite raising at 16Ma. There is an intense crust shortening resulted from the thrust faults and folds in the Cayu block which is shortened more 120km than that of the Lasha block in 35~90Ma. With the NE corner of the India plate squash into the Gangdese arc, the sinistral Pai shear fault and the dextral Aniqiao shear fault on the both sides of the Great bent of Yalun Zangbu river come into active in 21~26Ma. On the other hand, the right-lateral Gongrigabu strike-slip faults come into activity at the same period, a lower age bound for the Gongrigabu strike-slip fault is estimated to be 23~24Ma from zircon of ion-probe U/Pb thermochronology. The Gongrigabu strike-slip faults connect with the Lhari strike-slip fault in the northwestern direction and with the Saganing strike-slip at the southeastern direction. Another important structure in the EHS is the Gangdese detachment fault system (GDS) which occurs between the sedimental cover and the metamorphic basement. The lower age of the GDS is to be 16Ma from the preliminary 40Ar/39Ar thermochronology of white mica. The GDS is thought to be related to the reverse of the subducted Indian crust and the fast uplift of the EHS. Structural and thermochronology investigation of the EHS suggest that the eastern Tibet and the western Yunnan rotated clockwise around the EHS in the period of 35~60Ma. Later, the large-scale strike-slip faults (RRD, Gaoligong and Saganing fault) prolongate into the EHS, and connect with the Guyu fault and Gongrigabu fault, which suggest that the Indianchia block escape along these faults. Two kind of magmatic rocks in the EHS have been investigated, one is the mantle-derived amphibole gabbro, dioposide diorite and amphibole diorite, another is crust origin biotit-garnet adamellite, biotit-garnet granodiorite and garnet-amphibole-biotite granite. The amphibole gabbro dioposite diorite and amphibole diorite are rich in LREE, and LILE, such as Ba, Rb, Th, K, Sr etc, depleted in HFSE, such as Nb, Ta, Zr, Hf, Ti etc. The ratio of ~(87)Sr/~(86)Sr are from 0.7044 to 0.7048, ~(143)Nd/~(144)Nd are from 0.5126 to 0.5127. The age of the mantle origin magamatic rocks, which result from the partial melt of the raising and decompression anthenosphere, is 8Ma by ~(40)Ar/~(39)Ar dating of amphibole from the diorite. The later crust origin biotite-garnet adamellite, biotite-garnet granodiorite and garnet-amphibole-biotite granite are characterized by aboudance in LREE, and strong depletion of Eu. The ratios of ~(87)Sr-~(86)Sr are from 0.795035 to 0.812028, ~(143)Nd/~(144)Nd from 0.51187 to 0.511901. The ~(40)Ar/~(39)Ar plateau age of the amphibole from the garnet-amphibole-biotite granite is 17.5±0.3Ma, and the isochrone age is 16.8±0.6Ma. Their geochemical characteristics show that the crust-derived magmatic rocks formed from partial melting of the lower curst in the post-collisional environment. A group of high-pressure kaynite-garnet granulites and enclave of high-pressure garnet-clinopyroxene grnulites and calc-silicate grnulites are outcroped along the MMT. The peak metamorphic condition of the high-pressure granulites yields T=800~960 ℃, P=1.4~1.8Gpa, corresponding the condition of 60km depth. The retrograde assemblages of the high-pressure grnulites occur at the condition of T=772.3~803.3 ℃, P=0.63~0.64Gpa. The age of the peak metamorphic assemblages are 45 ~ 69Ma indicated by the zircon U/Pb ion-plobe thermochronology, and the retrograde assemblage ages are 13~26Ma by U/Pb, ~(40)Ar/~(39)Ar thermochronology. The ITD paths of the high-pressure granulites show that they were generated during the tectonic thickening and more rapid tectonic exhumation caused by the subducting of the Indian plate and subsequent break-off of the subducted slab. A great deal of apatite, zircon and sphene fission-track ages, isotopic thermochronology of the rocks in the EHS show that its rapid raising processes of the EHS can be divided into three main periods. There are 35~60Ma, 13~25Ma, 0~3Ma. 3Ma is a turn in the course of raising in the EHS which is characterized by abruptly acceleration of uplifting. The uplift ratios are lower than 1mm .a~(-1) before 3Ma, and higher than 1mm .a~(-1) with a maximum ratio of 30mm .a~(-1) since 3Ma. The bottom (knick point) of the partial anneal belt is 3.8km above sea level in the EHS, and correspond to age of 3Ma determined by fission-track age of apatite. The average uplift ratio is about 1.4 mm .a~(-1) below the knick point. The EHS has raised 4.3km from the surface of 2.36km above sea level since 3Ma estimated by the fossil partial anneal belt of the EHS. We propose a two-stage subduction model (B+A model) basing on Structural, thermochronological, magmatical, metamorphic and geophysical investigations of the EHS. The first stage is the subduction of the Indian continental margin following after the subduction of the Tethys Ocean crust and subsequent collision with the Gangdese arc, and the second stage is the Indian crust injecting into the lower crust and upper mantle of the Tibet plateau. Slab break-off seems to be occurred between these two stages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are many Archean TTG grey suites in the Wutaishan area, northern Shanxi Province, China. In the past one hundred years, many geologists have done excellent research work in the Wutaishan and its adjacent regions. However, the TTG suites were almost neglected. Located in the northern slope of Mt. Hengshan-namely the Archean Hengshan Island Arc, intruded the Zhujiafang supercrustal rocks at almost 2.5Ga, the Yixingzhai TTG Suite is originated from partial melting of the ancient lower crust upper mantle by REE and trace elements, and the emplacement occurred in an Archean island arc. The rocks are mainly of tonalitic, I type, and calc-alkaline trends are found in the magmatic evolution. At almost 1.8 Ga, the suite was transformed to be dome-like schists in an arc-arc collision event, and the rocks were metamorphosed to an extent of amphibolitic to granulitic facies. The peak metamorphic condition is of 710-760 ℃/0.68-0.72GPa, and the subsequent cooling history is recorded as 560-620 ℃/0.46-0.60GPa. In the center of the Mt. Wutaishan-known as the Archean Wutaishan Island Arc, intruded the Archean Chechang-Beitai TTG Suite, which is of 2.5Ga old and of trondhjemitic and tonalitic, with coexisting I- and S-types and a trondhjemitic magmatic evolution trend. Through REE and trace elements, the suite is believed to be from the partial melting of the ancient lower crust or upper mantle. The 1.8 Ga collision event also made the suite gneissic and the it was metamorphosed to be amphibolitic facies, whose peak condition is approximately of 680 (±50) ℃/0.7Gpa, and the subsequent cooling process is recorded as 680 (±50) ℃、550(±50) ℃、420(±10) ℃. Crustal growth is fulfilled through magmatic intrusion as well as eruption at about 2.5Ga, arc-arc collision at about 1.8 Ga in the Wutaishan area and its environs. Additionally, the biotite-muscovite and muscovite-plagioclase geothermometers are refined, and the biotite-hornblende geothermometer is developed in this dissertation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dissertation focuses on the petrology, geochemistry of the volcanic rocks in east Tibet and southeast Yunnan. It lucubrates the Magmatic process, forming mechanism and the possible tectonic settings of the volcanic rocks. The volcanic rocks of Nangqen basin in east Tibet, Qinghai province are mainly Cenozoic intermediate-acid shoshonites. The rocks are LREE enriched and the LREE/HREE = 3~34; (La/Yb)_N = 18.17-53.59, and ΣREE 222~1260μg/g. There are no Eu anomaly, and Nb, Ta, Zr, Hf, Ti are markedly depleted. The isotopic composition is ~(87)Sr/~(86)Sr = 0.70497~0.70614, ~(206)Pb/~(204)Pb = 18.622~18.974, ~(208)Pb/~(204)Pb = 38.431~38.996, ~(207)Pb/~(204)Pb = 15.511~15.613, respectively. K-Ar age of the whole rocks and the single mineral are between 32.0-36.5Ma. Based on the trace elements and isotopic elements, we get the conclusion that the partial melting is one of the dominated forming mechanisms for the volcanic rocks in Naneqen basin. The magma did not experience the crustal contamination en route to the surface; however, the complex mixture took place in the upper mantle before the melt was formed. There are at least two kinds of mixed sources that can be identified. The basalt in southeast Yunnan province is studied. They are distributed in Maguan, Tongguan, and Pingbian County, which is located on the both sides of the Red River belt, and the ultrabasic xenolith are cursory introduced. The volcanic rocks belongs to the alkali series, which can be subdivided into trachybasalt and basanite(Ol normal molecule >5). The volcanic rocks are characteristics by high Ti and low Mg#. According to the magma calculation model, the original rocks of the basalt in southeast Yunnan province are Spinel Lherzolite in Tongguan, Garnet Lherzolite in Pingbian and Maguan, while Togguan undergoes 2-5 percent and percent of partial melting, whereas volcanism in Maguan and Pingbian was so complex to calculate. The fractional crystallization took place during the magma evoltion in southeast Yunnan. The basalt is enriched in LREE with LREE/HREE=9.23-20.19. All of the trace elements display weak Nb, Ta peak, and the depletion of Zr, Hf and Ti in Maguan and pingbian represent the presence of Garnet in the source. The composition of the isotope ratio are ~(87)Sr/~(86)Sr = 0.70333-0.70427, ~(143)Nd/~(144)Nd = 0.512769-0.512940, ~(206)Pb/~(204)Pb = 18.104-18.424, ~(207)Pb/~(204)Pb = 15.483 -15.527; ~(208)Pb/~(204)Pb = 37.938-38.560, respectively, which shows the characteristics of the HIMU type OIB. The volcanic rocks of the southwest Yunnan are derived from the enriched, OIB type mantle sources by synthesizing all the data from trace and isotope elements. It is similar to that of the volcanic rocks in Hawaii, a typical kind of the mixtures of the recycled oceanic crust plume and depleted asthenosphere. To sum up, the volcanic rocks in southeast Yunnan are formed by the intraplate hotpot volcanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Jiaodong Peninsula is the largest repository of gold in China. Varieties of studies have been involved in the mechanism of metallogenesis. This thesis is a part of the project "Study of basic geology related to the prespecting of the supra-large deposits" which supported by National Climbing Program of China to Prof. Zhou. One of the key scientific problems is to study the age and metallogenic dynamics of ore deposit and to understand how interaction between mantle and crust constrains on metallogenesis and lithogenesis. As Jiaodong Peninsula to be study area, the Rb-Sr, Sm-Nd and Pb isotopic systematics of pyrite and altered rocks are measured to define the age and origin of gold. The elemental and Sr-Nd-Pb isotopic compositions of dikes and granites was studied to implicate the source and lithogenesis of the dike and granite and removal of lithosphere and the interaction between mantle and crust in the Jiaodong Peninsula. Considering the tectonic of Jiaodong Peninsula, basic on the time and space, this thesis gives a metallogenic dynamics of gold mineralization and discusses the constraints of the interaction between mantle and crust on the metallogenesis and lithogenesis. This thesis reports the first direct Rb-Sr dating of pyrites and ores using sub-sampling from lode gold deposit in Linglong, Jiaodong Peninsula and the results demonstrate this as a useful geochronological technique for gold mineralization with poor age constraint. The Rb-Sr data of pyrites yields an isochron age of (121.6-122.7) Ma, whereas, those of ore and ore-pyrite spread in two ranges from 120.0 to 121.8 Ma and 110.0-111.7 Ma. Studies of characteristic of gold deposit, microscopy of pyrite and quartz indicate that the apparent ages of ore and ore-pyrite are not isochron ages, it was only mixed by two end members, i.e., the primitive hydrothermal fluids and wall rocks. However, the isochron age of pyrite samples constrains the age of gold mineralization, i.e., early Cretaceous, which is in good consistence with the published U-Pb ages of zircon by using the SHRIMP technique. The whole rock Rb-Sr isochron age of altered rocks indicates that the age of gold mineralizing in the Xincheng gold deposit is 116.6 ± 5.3 Ma. The Sr, Nd and Pb isotopic compositions of pyrite and altered rocks indicate that the gold and relevant elements were derived from multi-sources, i.e. dikes derived from enriched lithospheric mantle and granites, granodiorites and metamorphic rocks outcropped on the crust. It also shows that the hydrothermal fluids derived from mantle magma degassing had play an important role in the gold mineralizing. The major and trace elements, Sr-Nd-Pb isotopic data of granites and granodiorites suggest that the Linglong Granite and Kunyushan Granite were derived from partial melting of basement rocks in the Jiaodong Peninsula at post-collision of North China Craton with South China Craton. Guojialing Granodiorite was considered to be derived from a mixture source, that is, mixed by magmas derived from an enriched lithospheric mantle and crust during the delamination of lithosphere induced by the subduction of Izanagi Plate and the movement of Tancheng-Lujiang Fault. There are kinds of dikes occurred in the Jiaodong Peninsula, which are accompanying with gold mineralization in time and space. The dikes include gabrro, diabase, pyroxene diorite, gabrrophyre, granite-porphyry, and aplite. The whole rock K-Ar ages give two age intervals: 120-124 Ma for the dikes that erupted at the gold mineralizing stage, and <120 Ma of the dikes that intruded after gold mineralizing. According to the age and the relationship between the dikes and gold mineralizing, the dikes could be divided into two groups: Group I (t = 120-124 Ma) and Group II (t < 120Ma). Group I dikes show the high Mg and K, low Ti contents, negative Nb anomalies and positive Eu anomalies, high ~(87)Sr/~(86)Sr and negative εNd(t) values and an enrichment in light rare earth elements, large ion lithosphile elements and a depletion in high field strength elements. Thus the elemental and isotopic characteristics of the Group I dikes indicate that they were derived from an enriched lithospheric mantle perhaps formed by metasomatism of the melt derived from the recycled crustal materials during the deep subduction of continent. In contrast, the Group II dikes have high Ti, Mg and K contents, no negative Nb anomalies, high ~(87)Sr/~(86)Sr and positive or little negative εNd(t) values, which indicate the derivation from a source like OIB-source. The geochemical features also give the tectonic constraints of dikes, which show that Group I dikes were formed at continental arc setting, whereas Group II dikes were formed within plate background. Considering the tectonic setting of Jiaodong Peninsula during the period of gold mineralizing, the metallogenic dynamics was related to the subduction of Izanagi Plate, movement of Tancheng-Lujiang Fault and removal of lithopheric mantle during Late Mesozoic Era.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mafic granulite xenoliths have been extensively concerned over the recent years because they are critical not only to studies of composition and evolution of the deep parts of continental crust but to understanding of the crust-mantle interaction. Detailed petrology, geochemistry and isotope geochronology of the Early Mesozoic mafic-ultramafic cumulate xenoliths and mafic granulite xenoliths and their host diorites from Harqin area, eastern Inner-Mongolia have been studied here. Systematic Rb-Sr isochron, ~(40)Ar-~(39)Ar and K-Ar datings for mafic-ultramafic cumulate xenoliths give ages ranging from 237Ma to 221Ma. Geochemical research and forming temperature and pressure estimates suggest that cumulates are products of the Early Mesozoic mantle-derived magmatic underplating and they formed in the magmatic ponds at the lowermost of the continental crust and are later enclaved by the dioritic magma. Detailed study on the first-discovered mafic granulite xenoliths reveals that their modal composition, mineral chemistry and metamorphic P-T conditions are all different from those of the Precambrian granulite exposed on the earth surface of the North China craton. High-resolution zircon U-Pb dating suggests that the granulite facies metamorphism may take place in 253 ~ 236Ma. Hypersthene single mineral K-Ar dating gives an age of 229Ma, which is believed to represent a cooling age of the granulite. As the host rock of the cumulate and granulite xenoliths, diorites intruded into Archean metamorphic rocks and Permian granite. They are mainly composed of grandodiorite, tonalite and monzogranite and show metaluminous and calc-alkaline features. Whole rock and single mineral K-Ar dating yields age of 221 ~ 223Ma, suggesting a rapid uplift in the forming process of the diorites. Detailed field investigation and geochemical characteristics indicate that these diorites with different rock types are comagmatic rocks, and they have no genetic correlation with cumulate and granulite xenoliths. Geochemical model simulating demonstrates that these diorites in different lithologies are products of highly partial melting of Archean amphibolite. It is considered that the Early Mesozoic underplating induced the intrusion of diorites, and it reflects an extensional geotectonic setting. Compression wave velocity V_P have been measured on 10 representative rock samples from the Early Mesozoic granulite and mafic-ultramafic cumulate xenoliths population as an aid to interpret in-situ seismic velocity data and investigating velocity variation with depth in a mafic lower crust. The experiments have been carried out at constant confining pressures up to 1000MPa and temperatures ranging from 20 ℃ to around 1300 ℃, using the ultrasonic transmission technique. After corrections for estimated in situ crustal pressures and temperatures, elastic wave velocities range from 6.5 ~ 7.4 km s~(-1). On the basis of these experimental data, the Early-Mesozoic continental compression velocity profile has also been reestablished and compared with those of the present and of the different tectonic environments in the world. The result shows that it is similar to the velocity structure of the extensional tectonic area, providing new constraints on the Early Mesozoic continental structure and tectonic evolution of the North-China craton. Combining with some newly advancements about the regional geology, the thesis further proposes some constraints on the Mesozoic geotectonic evolution history, especially the features of deep geology of the North China craton.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As powerful tools to study the lithosphere dynamics, the effective elastic thickness (Te) as well as the envelope of yielding stress of lithosphere have been attracted great attention of geoscientists in the past thirty years. The oceanic lithosphere, contrary to the continental lithosphere, has more fruits for its simple structures and evolution process. In continent, the lithosphere commonly is complex and variable in the rheological, thermal structures, and has a complicated history. Therefore, the application of the effective elastic thickness in continent is still a subject to learn in a long time. Te, with the definition of the thickness of an elastic plate in theory flexured by the equal benging of the real stress in the lithosphere plate (Turcotte, 1982), marks the depth of transition between elastic and fluid behaviors of rocks subjected to stress exceeding 100 MPa over the geological timescales (McNutt, 1990). There are three methods often adapted: admittance or isostatic response function, coherence and forwarding. In principle, the models of Te consist of thermal-rheological, non-linear Maxwell, non-linear work hardening and rheological layered models. There is a tentative knowledge of Te that it is affected by the following factors: crustal thickness, crust-mantle decoupling, plate bending, boundary conditions of plate (end forces and bending moments), stress state, sedimentary layer, faulting effect, variation in the mountain belts' strike, foreland basin, inheritance of tectonic evolution, convection of mantle, seismic depth and lithosphere strength. In this thesis, the author introduces the geological sketch of the Dabie collisional orogenic belt and the Hefei Basin. The Dabie Mts. is famous for the ultra-high pressure metamorphism. The crustal materials subducted down to the depth of at least 100 km and exhumed. So that the front subjects arise such as the deeply subduction of continent, and the post-collisional crust-mantle interaction. In a geological journey at June of 1999, the author found the rarely variolitic basaltic andesite in the Dabie Mts. It occurs in Susong Group, near Zhifenghe Countryside, Susong County, Anhui Province. It is just to the south of the boundary between the high-grade Susong melange and the ultra-high grade South Dabie melange. It has a noticeable knobby or pitted appearance in the surface. The size of the varioles is about 1-4 mm. In hand-specimen and under microscope, there are distinct contacts between the varioles and the matrice. The mineralogy of the varioles is primarily radiate plagioclase, with little pyroxene, hornblende and quartz. The pyroxene, hornblende and quartz are in the interstices between plagioclase. The matrix is consisted of glass, and micro-crystals of chlorite, epidote and zoisite. It is clearly subjected and extensive alteration. The andesite has an uncommon chemical composition. The SiO_2 content is about 56.8%, TiO_2 = 0.9%, MgO = 6.4%, (Fe_2O_3)_(Total) = 6.7% ~ 7.6%, 100 Mg/(Mg+Fe) = 64.1 ~ 66.2. Mg# is significantly high. The andesite has higher abundances of large-lithophile trace elements (e.g. K, Ba, Sr, LREE), e.g. La/Nd = 5.56-6.07, low abundances of high-strength-field elements (HFSE, e.g. Ta, Nb, P, Ti), particularly Ta and Nb strongly depleted. These are consistent with the characteristics of subducted-related magmas (Pearcce, 1982; Sun and McDonaugh, 1989). In the spider diagram of trace elements, from Ce to right hand, the abundances of elements decrease quickly, showing a characteristic of the continental margins (Pearce, 1982). There has a strongly enrichment of light-rare-earth elements, with a significant diffraction of REEs (the mean value of (La/Yb)_N is 32.84). No Eu anomaly, but there are anomaly high (La/Yb)_N = 28.63-36.74, (La/Y)_N = 70.33 - 82.84. The elements Y and Yb depleted greatly, Y < 20 ppm, Y_N = 2.74-2.84, Yb_N = 2.18 - 2.35. From the La-(La/Sm) diagram, the andesite is derived from partial melting. But the epsilone value of Nd is -18.7 ~ -19.2, so that the material source may be the mantle materials affected by the crustal materials. The Nd model age is 1.9 Ga indicating that the basaltic andesite was resulted from the post-collisional crust-mantle interaction between the subducted Yangze carton and the mantle of Sino-Korea carton. To obtain the Te of the lithosphere beneath the Dabie Mts. and the Hefei Basin, the author applies the coherence method in this thesis. The author makes two topography-gravity profiles (profiles 7~(th) and 9~(th)) across the Dabie Mts. and the Hefei Basin, and calculates the auto-coherence, across coherence, power spectrum, across power spectrum of the topography and gravity of the two profiles. From the relationships between the coherence and the wave-number of profiles. From the relationships between the coherence and the wave-number of profiles 7~(th) and 9~(th), it is obtained that the characteristic wavelengths respectively are 157 km and 126 km. Consequently the values of effective elastic thickness are 6.5 km and 4.8 km, respectively. However, the Te values merely are the minimum value of the lithosphere because the coherencemethod in a relative small region will generate a systemic underestimation. Why there is a so low Te value? In order to check the strength of the lithosphere beneath the Dabie Mts., the authore tries to outline the yielding-stress envelope of the lithosphere. It is suggested that the elastic layers in the crust and upper mantle are 18 km and 35 km, respectively. Since there exist a low viscosity layer about 3-5 km thickness, so it is reasonable that the decoupling between the crust and mantle occurred. So the effective thickness of the lithosphere can be estimated from the two elastic layers. Te is about 34 km. This is the maximum strength of the lithosphere. We can make an approximately estimation about the strength of the lithosphere beneath the Dabie Mts.: Te is about 20-30 km. The author believes that the following factors should be responsible for the low Te value: (1) the Dabie Mts. has elevated strongly since K_3-J_1. The north part of the Dabie Mts. elevates faster than the south part today; (2) there occur large active striking faults in this area. And in the east, the huge Tan-Lu striking fault anyway tends to decrease the lithosphere strength; (3) the lithosphere beneath the Dabie Mts. is heter-homogeneous in spatio-temporal; (4) the study area just locates in the adjacent region between the eastern China where the lithosphere thickness is significantly reduced and the normal western China. These factors will decrease the lithosphere strength.