986 resultados para parasitic nematode
Resumo:
The effect of temperature (20 degrees-35 degrees C) on different stages of Romanomermis iyengari was studied. In embryonic development, the single-cell stage eggs developed into mature eggs in 4.5-6.5 days at 25-35 degrees C but, required 9.5 days at 20 degrees C. Complete hatching occurred in 7 and 9 days after egg-laying at 35 and 30 degrees C, respectively. At 25 and 20 degrees C, 85-96 of the eggs did not hatch even by 30th day. Loss of infectivity and death of the preparasites occurred faster at higher temperatures. The 50 survival durations of preparasites at 20 and 35 degrees C were 105.8 and 10.6 hr respectively. They retained 50 infectivity up to 69.7 and 30.3 hr. The duration of the parasitic phase increased as temperature decreased. Low temperature favoured production of a higher proportion of females which were also larger in size. The maximum time taken for the juveniles to become adults was 14 days at 20 degrees C and the minimum was 9 days at 35 degrees C. Oviposition began earlier at higher temperature than at lower temperature. However, its fecundic period was shorter at 20 degrees C than at 35 degrees C indicating enhanced rate of oviposition at 20 degrees C. Fecundity was adversely affected at 20 degrees C and 35 degrees C. It is shown that the temperature range of 25 degrees-30 degrees C favours optimum development of R. iyengari.
Resumo:
In vitro tests were carried out to verify the activity of 26 Brazilian isolates of predatory fungi of the genus Arthrobotrys on a free-living nematode (Panagrellus sp.) and on infective larvae of Cooperia punctata, a parasitic gastrointestinal nematode of cattle. The results showed that the free-living nematode Panagrellus sp. was the most preyed upon, compared to C. punctata, for all the fungal treatments. Also, variable predatory capacity was observed for different fungal isolates belonging to the same genus when applied to different nematode species.
Resumo:
Plants influence the behavior of and modify community composition of soil-dwelling organisms through the exudation of organic molecules. Given the chemical complexity of the soil matrix, soil-dwelling organisms have evolved the ability to detect and respond to these cues for successful foraging. A key question is how specific these responses are and how they may evolve. Here, we review and discuss the ecology and evolution of chemotaxis of soil nematodes. Soil nematodes are a group of diverse functional and taxonomic types, which may reveal a variety of responses. We predicted that nematodes of different feeding guilds use host-specific cues for chemotaxis. However, the examination of a comprehensive nematode phylogeny revealed that distantly related nematodes, and nematodes from different feeding guilds, can exploit the same signals for positive orientation. Carbon dioxide (CO(2)), which is ubiquitous in soil and indicates biological activity, is widely used as such a cue. The use of the same signals by a variety of species and species groups suggests that parts of the chemo-sensory machinery have remained highly conserved during the radiation of nematodes. However, besides CO(2), many other chemical compounds, belonging to different chemical classes, have been shown to induce chemotaxis in nematodes. Plants surrounded by a complex nematode community, including beneficial entomopathogenic nematodes, plant-parasitic nematodes, as well as microbial feeders, are thus under diffuse selection for producing specific molecules in the rhizosphere that maximize their fitness. However, it is largely unknown how selection may operate and how belowground signaling may evolve. Given the paucity of data for certain groups of nematodes, future work is needed to better understand the evolutionary mechanisms of communication between plant roots and soil biota.
Resumo:
Heterodera glycines and Helicotylenchus dihystera were the two most abundant plant-parasitic nematodes found in two H. glycines race 3-infested fields, Chapadão do Céu, MS and Campo Alegre, MG. These fields had been planted with resistant (R) and susceptible (S) plants to cyst nematodes. In the first field, soybean (Glycine max) FT-Cristalina (S) was susceptible to H. glycines but resistant to H. dihystera, while GOBR93 122243 (R) was just the opposite. In the second field, M-Soy 8400 (R) was more resistant to the spiral nematode than M-Soy8411 (S), but the resistance to the cyst nematode was not different between the two genotypes. The total abundance of nematodes was not different between the susceptible and resistant plants in the two fields, suggesting that H. dihystera and/or bacterial feeders and other trophic groups replaced the reduced abundance of the cyst nematodes in resistant plants. Bacterial feeders acted as a compensatory factor to plant-parasitic nematodes in ecological function. The populations of fungal feeders were higher in GOBR93 122243 (R) than in susceptible FT-Cristalina (S) in Chapadão do Céu, but lower in M-Soy 8400 (R) than in M-Soy 8411 (S) in Campo Alegre. This is being attributed to the different periods of soil samplings that were made at the florescent period in the first field, and at the final growing cycle in the second field. Only four nematodes, H. glycines, H. dihystera, Acrobeles sp. and Panagrolaimus sp. dominated the nematode resistant community GOBR93 122243 (R) in Chapadão do Céu, but dominance was shared by ten genera in Campo Alegre, which explains why the five diversity indexes (S, d, Ds, H' and T) were higher in resistant plants than in susceptible plants in field two.
Resumo:
Management of plant-parasitic nematodes with the use of nematicides has not been recommended for small farmers that grow yam in the Northeastern region of Brazil, due to its high cost and residue toxicity. The use of plants with antagonistic effect to nematodes and green manure which improves soil chemical, physical and biological characteristics can be a viable and low cost alternative to control parasitic nematodes. This work aimed to evaluate the effect of crotalaria (Crotalaria juncea) and pigeon pea (Cajanus cajan) plants on the control of yam nematodes. Three experiments were carried out. The first was conducted under in vitro conditions to evaluate the nematostatic and nematicide effect of extracts from fresh and dry matter of the above ground parts of crotalaria, pigeon pea, and the combination of both. The second experiment was carried out under greenhouse conditions to evaluate the effect of soil amendment with crotalaria, pigeon pea, and the combination of both in the infectivity of Scutellonema bradys, using tomato plants as the host plant. The third experiment was conducted under field conditions to evaluate the effect of crotalaria, pigeon pea, and the combination of both, cultivated between yam planting rows and incorporated to soil surface, on yam nematodes. The aqueous extract obtained form fresh matter of crotalaria had a nematicide effect of 100% for S. bradys. Extracts from dry matter of both crotalaria and pigeon pea did not have any nematicide effect, but had a nematostatic effect. Incorporation of crotalaria to soil inhibited infectivity of S. bradys in tomato seedlings. These results showed that planting crotalaria alone or in combination with pigeon pea, between the yam planting rows, is an efficient method for controlling S. bradys and Rotylenchulus reniformis associated with yams. Crotalaria can be used for controlling these plant-parasitic nematodes in soil.
Resumo:
In vitro tests were carried out on the pathogenicity of nine isolates of the predatory fungi of the genus Monacrosporium (5 M. sinense isolates, 3 M. appendiculatum and 1 M. thaumasium isolate) for a phytonematode (second stage juveniles from Meloidogyne incognita, race 3), a free-living nematode (Panagrellus spp), and two gastrointestinal parasitic nematodes of cattle (infective larvae of Cooperia punctata and Haemonchus placei). A suspension containing 2,000 nematodes from each species was added to Petri dishes containing fungi and grown on 2% water-agar medium at 25oC in the dark for up to 7 days. The dishes were examined every other day for 7 days and predation-free nematodes were counted. The results showed that the free-living nematodes, Panagrellus spp, were the most susceptible (P<0.05), followed by the phytonematode M. incognita, while the controls were ³98.5% viable. However, a variable susceptibility of the nematodes to different fungi was observed. This indicates that the use of predatory fungi for the environmental control of nematodes will be limited by the multiplicity of nematodes in the environment and their differential susceptibility to fungal isolates of the same genus.
Resumo:
A species of the hyper-parasitic bacterium Pasteuria was isolated from the root-knot nematode Meloidogyne ardenensis infecting the roots of ash (Fraxinus excelsior). It is morphologically different from some other Pasteuria pathogens of nematodes in that the spores lack a basal ring on the ventral side of the spore and have a unique clumping nature. Transmission electron microscopy (TEM) showed that the clumps of spores are not random aggregates but result from the disintegration of the suicide cells of the thalli. Sporulation within each vegetative mycelium was shown to be asynchronous. In addition to the novel morphological features 16S rRNA sequence analysis showed this to be a new species of Pasteuria which we have called P. hartismeri. Spores of P. hartismeri attach to juveniles of root-knot nematodes infecting a wide range of plants such as mint (Meloidogyne hapla), rye grass (unidentified Meloidogyne sp.) and potato (Meloidogyne fallax). (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
A RAPD-PCR assay was developed and used to test For competitive variability in growth of the nematode biological control fungus Pochonia chlamydosporia. Saprophytic competence in soil with or without tomato plants was examined in three isolates of the fungus: RES 280 (J), originally isolated from potato cyst nematode (PCN) cysts; RES 200 (1) and RES 279 (S), both originally isolated from root knot nematode (RKN) eggs. Viable counts taken at 70 d indicated that I was the best saprophyte followed by S, with J the poorest. RAPD-PCR analysis of colonies from mixed treatments revealed that there was a cumulative effect of adding isolates to the system. This Suggested that the isolates did not interact and that they may occupy separate niches in soil and the rhizosphere. To investigate parasitic ability, soils were seeded with two isolates of the fungus: J and S, singly or in combination. Tomato or potato plants were grown in these soils; free of nematodes, or inoculated with PCN or RKN, and incubated for 77 d. The abundance of the PCN isolate J in PCN cysts was significantly greater than that of the RKN isolate S but in RKN egg masses, S was significantly more abundant than J. RAPD-PCR analysis of colonies from mixed treatments confirmed that J was more abundant than S ill PCN cysts whereas the converse was observed on RKN egg masses. This substantiates the phenomenon of nematode host preference at the infraspecific level of P. chlamydosporia and highlights its relevance for biological control of plant parasitic nematodes.
Resumo:
A RAPD-PCR assay was developed and used to test For competitive variability in growth of the nematode biological control fungus Pochonia chlamydosporia. Saprophytic competence in soil with or without tomato plants was examined in three isolates of the fungus: RES 280 (J), originally isolated from potato cyst nematode (PCN) cysts; RES 200 (1) and RES 279 (S), both originally isolated from root knot nematode (RKN) eggs. Viable counts taken at 70 d indicated that I was the best saprophyte followed by S, with J the poorest. RAPD-PCR analysis of colonies from mixed treatments revealed that there was a cumulative effect of adding isolates to the system. This Suggested that the isolates did not interact and that they may occupy separate niches in soil and the rhizosphere. To investigate parasitic ability, soils were seeded with two isolates of the fungus: J and S, singly or in combination. Tomato or potato plants were grown in these soils; free of nematodes, or inoculated with PCN or RKN, and incubated for 77 d. The abundance of the PCN isolate J in PCN cysts was significantly greater than that of the RKN isolate S but in RKN egg masses, S was significantly more abundant than J. RAPD-PCR analysis of colonies from mixed treatments confirmed that J was more abundant than S ill PCN cysts whereas the converse was observed on RKN egg masses. This substantiates the phenomenon of nematode host preference at the infraspecific level of P. chlamydosporia and highlights its relevance for biological control of plant parasitic nematodes.
Resumo:
The control of Pratylenchus goodeyi a common nematode parasite of banana crop in Madeira Island can benefit from searching for natural nematicides through plants extracts. With this aim we submitted Solanum nigrum and S. sisymbriifolium dried plants to a sequential extraction in the solvent sequence of dichloromethane, acetone, ethanol and water, and to na aqueous extraction of the fresh and dried plants. Analyses with the extracts at several concentrations were used to assess mobility and mortality on P. goodeyi. Results showed that the water extract and aqueous extracts from both plants at a concentration of 10 mg/mL affected nematode mobility and caused mortality but the acetone extract from S. nigrum was the most efficient, causing 100% mortality whereas dichloromethane had no effect on P. goodeyi. Determination of the lipophilic and phenolic compounds present in the two most effective Solanum extracts (acetone and water) and in dichloromethane extract revealed that some of these compounds had nematicidal activity. S. nigrum acetone extract (10 mg/mL) was used to find out the nematicidal potential following the effect at gene expression level and nematode behaviour. Genes coding for calreticulin and beta-1,4- endoglucanase related to parasitism and translocon-associated protein putatively connected to stress were obtained and its relative expression assessed in nematodes exposed to the extract. Results revealed that expression of Pg-CRT decreased showing to influence the infection, Pg-ENG remained steady and Pg-TRAPδ was induced over time exposure. Biological assays showed that P. goodeyi mobility and ability to infect the banana roots were affected as a decrease in the number of nematodes that reached the roots was obtained with the increased exposure time to the extract being implicated in the infection success. The information obtained from this thesis showed that S. nigrum has potential to be used for the development of a new control strategy against plant-parasitic nematodes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A trial was carried out to determine the resistance to natural infection by gastrointestinal nematodes in 12 Santa Inês and nine Ile de France lambs before weaning. Faecal samples were obtained for faecal nematode egg counts (FEC). Blood samples were collected to determine packed cell volume (PCV), total plasma protein levels and peripheral eosinophil counts. Most Ile de France lambs (77.8%) were treated with an anthelmintic at 43 days of age, while 50% off Santa Inês lambs were treated at weaning, 57 days of age. The mean PCV values were normal in Santa Inês lambs, while in Ile de France lambs showed lower values reaching 22.3% at 43 days of age. The lowest mean plasma protein values were observed in Ile de France lambs (4.13 g/dl) at 43 days of age and in Santa Inês lambs (5.0 g/dl) at 57 days of age. Before weaning, Santa Inês lambs were susceptible to natural infections by gastrointestinal nematodes but with a greater capacity to stand the adverse effects of parasitism compared to Ile de France lambs.
Resumo:
Studies focusing on communities of helminths from Brazilian lizards are increasing, but there are many blanks in the knowledge of parasitic fauna of wild fauna. This lack of knowledge hampers understanding of ecological and parasitological aspects of involved species. Moreover, the majority of research has focused on parasitic fauna of lizards from families Tropiduridae and Scincidae. Only a few studies have looked at lizards from the family Leiosauridae, including some species of Enyalius. This study presents data on the gastrointestinal parasite fauna of Enyalius perditus and their relationships with ecological aspects of hosts in a disturbed Atlantic rainforest area in the state of Minas Gerais, south-eastern Brazil. Two nematode species, Oswaldocruzia burseyi [(Molineidae) and Strongyluris oscari (Heterakidae) were found. Nematode species showed an aggregated distribution in this host population, with O. burseyi being more aggregated than S. oscari. The present study extends the range of occurrence of O. burseyi to the Brazilian continental area. © 2011 Cambridge University Press.