986 resultados para parallel architectures


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transactional memory (TM) is a new synchronization mechanism devised to simplify parallel programming, thereby helping programmers to unleash the power of current multicore processors. Although software implementations of TM (STM) have been extensively analyzed in terms of runtime performance, little attention has been paid to an equally important constraint faced by nearly all computer systems: energy consumption. In this work we conduct a comprehensive study of energy and runtime tradeoff sin software transactional memory systems. We characterize the behavior of three state-of-the-art lock-based STM algorithms, along with three different conflict resolution schemes. As a result of this characterization, we propose a DVFS-based technique that can be integrated into the resolution policies so as to improve the energy-delay product (EDP). Experimental results show that our DVFS-enhanced policies are indeed beneficial for applications with high contention levels. Improvements of up to 59% in EDP can be observed in this scenario, with an average EDP reduction of 16% across the STAMP workloads. © 2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents exact algorithms for the Resource Allocation and Cyclic Scheduling Problems (RA&CSPs). Cyclic Scheduling Problems arise in a number of application areas, such as in hoist scheduling, mass production, compiler design (implementing scheduling loops on parallel architectures), software pipelining, and in embedded system design. The RA&CS problem concerns time and resource assignment to a set of activities, to be indefinitely repeated, subject to precedence and resource capacity constraints. In this work we present two constraint programming frameworks facing two different types of cyclic problems. In first instance, we consider the disjunctive RA&CSP, where the allocation problem considers unary resources. Instances are described through the Synchronous Data-flow (SDF) Model of Computation. The key problem of finding a maximum-throughput allocation and scheduling of Synchronous Data-Flow graphs onto a multi-core architecture is NP-hard and has been traditionally solved by means of heuristic (incomplete) algorithms. We propose an exact (complete) algorithm for the computation of a maximum-throughput mapping of applications specified as SDFG onto multi-core architectures. Results show that the approach can handle realistic instances in terms of size and complexity. Next, we tackle the Cyclic Resource-Constrained Scheduling Problem (i.e. CRCSP). We propose a Constraint Programming approach based on modular arithmetic: in particular, we introduce a modular precedence constraint and a global cumulative constraint along with their filtering algorithms. Many traditional approaches to cyclic scheduling operate by fixing the period value and then solving a linear problem in a generate-and-test fashion. Conversely, our technique is based on a non-linear model and tackles the problem as a whole: the period value is inferred from the scheduling decisions. The proposed approaches have been tested on a number of non-trivial synthetic instances and on a set of realistic industrial instances achieving good results on practical size problem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Combinatorial Optimization is becoming ever more crucial, in these days. From natural sciences to economics, passing through urban centers administration and personnel management, methodologies and algorithms with a strong theoretical background and a consolidated real-word effectiveness is more and more requested, in order to find, quickly, good solutions to complex strategical problems. Resource optimization is, nowadays, a fundamental ground for building the basements of successful projects. From the theoretical point of view, Combinatorial Optimization rests on stable and strong foundations, that allow researchers to face ever more challenging problems. However, from the application point of view, it seems that the rate of theoretical developments cannot cope with that enjoyed by modern hardware technologies, especially with reference to the one of processors industry. In this work we propose new parallel algorithms, designed for exploiting the new parallel architectures available on the market. We found that, exposing the inherent parallelism of some resolution techniques (like Dynamic Programming), the computational benefits are remarkable, lowering the execution times by more than an order of magnitude, and allowing to address instances with dimensions not possible before. We approached four Combinatorial Optimization’s notable problems: Packing Problem, Vehicle Routing Problem, Single Source Shortest Path Problem and a Network Design problem. For each of these problems we propose a collection of effective parallel solution algorithms, either for solving the full problem (Guillotine Cuts and SSSPP) or for enhancing a fundamental part of the solution method (VRP and ND). We endorse our claim by presenting computational results for all problems, either on standard benchmarks from the literature or, when possible, on data from real-world applications, where speed-ups of one order of magnitude are usually attained, not uncommonly scaling up to 40 X factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An approximate analytic model of a shared memory multiprocessor with a Cache Only Memory Architecture (COMA), the busbased Data Difussion Machine (DDM), is presented and validated. It describes the timing and interference in the system as a function of the hardware, the protocols, the topology and the workload. Model results have been compared to results from an independent simulator. The comparison shows good model accuracy specially for non-saturated systems, where the errors in response times and device utilizations are independent of the number of processors and remain below 10% in 90% of the simulations. Therefore, the model can be used as an average performance prediction tool that avoids expensive simulations in the design of systems with many processors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La motivación de esta tesis es el desarrollo de una herramienta de optimización automática para la mejora del rendimiento de formas aerodinámicas enfocado en la industria aeronáutica. Este trabajo cubre varios aspectos esenciales, desde el empleo de Non-Uniform Rational B-Splines (NURBS), al cálculo de gradientes utilizando la metodología del adjunto continuo, el uso de b-splines volumétricas como parámetros de diseño, el tratamiento de la malla en las intersecciones, y no menos importante, la adaptación de los algoritmos de la dinámica de fluidos computacional (CFD) en arquitecturas hardware de alto paralelismo, como las tarjetas gráficas, para acelerar el proceso de optimización. La metodología adjunta ha posibilitado que los métodos de optimización basados en gradientes sean una alternativa prometedora para la mejora de la eficiencia aerodinámica de los aviones. La formulación del adjunto permite calcular los gradientes de una función de coste, como la resistencia aerodinámica o la sustentación, independientemente del número de variables de diseño, a un coste computacional equivalente a una simulación CFD. Sin embargo, existen problemas prácticos que han imposibilitado su aplicación en la industria, que se pueden resumir en: integrabilidad, rendimiento computacional y robustez de la solución adjunta. Este trabajo aborda estas contrariedades y las analiza en casos prácticos. Como resumen, las contribuciones de esta tesis son: • El uso de NURBS como variables de diseño en un bucle de automático de optimización, aplicado a la mejora del rendimiento aerodinámico de alas en régimen transónico. • El desarrollo de algoritmos de inversión de punto, para calcular las coordenadas paramétricas de las coordenadas espaciales, para ligar los vértices de malla a las NURBS. • El uso y validación de la formulación adjunta para el calculo de los gradientes, a partir de las sensibilidades de la solución adjunta, comparado con diferencias finitas. • Se ofrece una estrategia para utilizar la geometría CAD, en forma de parches NURBS, para tratar las intersecciones, como el ala-fuselaje. • No existen muchas alternativas de librerías NURBS viables. En este trabajo se ha desarrollado una librería, DOMINO NURBS, y se ofrece a la comunidad como código libre y abierto. • También se ha implementado un código CFD en tarjeta gráfica, para realizar una valoración de cómo se puede adaptar un código sobre malla no estructurada a arquitecturas paralelas. • Finalmente, se propone una metodología, basada en la función de Green, como una forma eficiente de paralelizar simulaciones numéricas. Esta tesis ha sido apoyada por las actividades realizadas por el Área de Dinámica da Fluidos del Instituto Nacional de Técnica Aeroespacial (INTA), a través de numerosos proyectos de financiación nacional: DOMINO, SIMUMAT, y CORESFMULAERO. También ha estado en consonancia con las actividades realizadas por el departamento de Métodos y Herramientas de Airbus España y con el grupo Investigación y Tecnología Aeronáutica Europeo (GARTEUR), AG/52. ABSTRACT The motivation of this work is the development of an automatic optimization strategy for large scale shape optimization problems that arise in the aeronautics industry to improve the aerodynamic performance; covering several aspects from the use of Non-Uniform Rational B-Splines (NURBS), the calculation of the gradients with the continuous adjoint formulation, the development of volumetric b-splines parameterization, mesh adaptation and intersection handling, to the adaptation of Computational Fluid Dynamics (CFD) algorithms to take advantage of highly parallel architectures in order to speed up the optimization process. With the development of the adjoint formulation, gradient-based methods for aerodynamic optimization become a promising approach to improve the aerodynamic performance of aircraft designs. The adjoint methodology allows the evaluation the gradients to all design variables of a cost function, such as drag or lift, at the equivalent cost of more or less one CFD simulation. However, some practical problems have been delaying its full implementation to the industry, which can be summarized as: integrability, computer performance, and adjoint robustness. This work tackles some of these issues and analyse them in well-known test cases. As summary, the contributions comprises: • The employment of NURBS as design variables in an automatic optimization loop for the improvement of the aerodynamic performance of aircraft wings in transonic regimen. • The development of point inversion algorithms to calculate the NURBS parametric coordinates from the space coordinates, to link with the computational grid vertex. • The use and validation of the adjoint formulation to calculate the gradients from the surface sensitivities in an automatic optimization loop and evaluate its reliability, compared with finite differences. • This work proposes some algorithms that take advantage of the underlying CAD geometry description, in the form of NURBS patches, to handle intersections and mesh adaptations. • There are not many usable libraries for NURBS available. In this work an open source library DOMINO NURBS has been developed and is offered to the community as free, open source code. • The implementation of a transonic CFD solver from scratch in a graphic card, for an assessment of the implementability of conventional CFD solvers for unstructured grids to highly parallel architectures. • Finally, this research proposes the use of the Green's function as an efficient paralellization scheme of numerical solvers. The presented work has been supported by the activities carried out at the Fluid Dynamics branch of the National Institute for Aerospace Technology (INTA) through national founding research projects: DOMINO, SIMUMAT, and CORESIMULAERO; in line with the activities carried out by the Methods and Tools and Flight Physics department at Airbus and the Group for Aeronautical Research and Technology in Europe (GARTEUR) action group AG/52.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper describes a first supercomputer cluster project in Ukraine, its hardware, software and characteristics. The paper shows the performance results received on systems that were built. There are also shortly described software packages made by cluster users that have already made a return of investments into a cluster project.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper describes cluster management software and hardware of SCIT supercomputer clusters built in Glushkov Institute of Cybernetics NAS of Ukraine. The paper shows the performance results received on systems that were built and the specific means used to fulfil the goal of performance increase. It should be useful for those scientists and engineers that are practically engaged in a cluster supercomputer systems design, integration and services.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Graph analytics is an important and computationally demanding class of data analytics. It is essential to balance scalability, ease-of-use and high performance in large scale graph analytics. As such, it is necessary to hide the complexity of parallelism, data distribution and memory locality behind an abstract interface. The aim of this work is to build a scalable graph analytics framework that does not demand significant parallel programming experience based on NUMA-awareness.
The realization of such a system faces two key problems:
(i)~how to develop a scale-free parallel programming framework that scales efficiently across NUMA domains; (ii)~how to efficiently apply graph partitioning in order to create separate and largely independent work items that can be distributed among threads.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Performance evaluation of parallel software and architectural exploration of innovative hardware support face a common challenge with emerging manycore platforms: they are limited by the slow running time and the low accuracy of software simulators. Manycore FPGA prototypes are difficult to build, but they offer great rewards. Software running on such prototypes runs orders of magnitude faster than current simulators. Moreover, researchers gain significant architectural insight during the modeling process. We use the Formic FPGA prototyping board [1], which specifically targets scalable and cost-efficient multi-board prototyping, to build and test a 64-board model of a 512-core, MicroBlaze-based, non-coherent hardware prototype with a full network-on-chip in a 3D-mesh topology. We expand the hardware architecture to include the ARM Versatile Express platforms and build a 520-core heterogeneous prototype of 8 Cortex-A9 cores and 512 MicroBlaze cores. We then develop an MPI library for the prototype and evaluate it extensively using several bare-metal and MPI benchmarks. We find that our processor prototype is highly scalable, models faithfully single-chip multicore architectures, and is a very efficient platform for parallel programming research, being 50,000 times faster than software simulation.