954 resultados para oxide growth
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
This work mainly concentrate to understand the optical and electrical properties of amorphous zinc tin oxide and amorphous zinc indium tin oxide thin films for TFT applications. Amorphous materials are promising in achieving better device performance on temperature sensitive substrates compared to polycrystalline materials. Most of these amorphous oxides are multicomponent and as such there exists the need for an optimized chemical composition. For this we have to make individual targets with required chemical composition to use it in conventional thin film deposition techniques like PLD and sputtering. Instead, if we use separate targets for each of the cationic element and if separately control the power during the simultaneous sputtering process, then we can change the chemical composition by simply adjusting the sputtering power. This is what is done in co-sputtering technique. Eventhough there had some reports about thin film deposition using this technique, there was no reports about the use of this technique in TFT fabrication until very recent time. Hence in this work, co-sputtering has performed as a major technique for thin film deposition and TFT fabrication. PLD were also performed as it is a relatively new technique and allows the use high oxygen pressure during deposition. This helps to control the carrier density in the channel and also favours the smooth film surface. Both these properties are crucial in TFT.Zinc tin oxide material is interesting in the sense that it does not contain costly indium. Eventhough some works were already reported in ZTO based TFTs, there was no systematic study about ZTO thin film's various optoelectronic properties from a TFT manufacturing perspective. Attempts have made to analyse the ZTO films prepared by PLD and co-sputtering. As more type of cations present in the film, chances are high to form an amorphous phase. Zinc indium tin oxide is studied as a multicomponent oxide material suitable for TFT fabrication.
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
Over recent years nitric oxide (NO) not only has appeared as an important endogenous signaling molecule in plants and as a mediator in many developmental and physiological processes, but has also received recognition as a plant hormone. The impressive recent achievements in elucidating the role of NO in plants have come about by the application of NO donors. The aim herein was to study the effects of the different NO donors, sodium nitroprusside (SNP) and the nitrosyl ethylenediaminetetraacetate ruthenium(II) ([Ru(NO)(Hedta)]) complex on cellular growth in embryogenic suspension cultures of Araucaria angustifolia. Appraisal of our data revealed that [Ru(NO)(Hedta)] stimulated about 60% of cellular growth in embryogenic suspension cultures of A. angustifolia, with results similar to those observed with the SNP donor. Nevertheless, application of the NO scavenger PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) inhibited this cellular growth in both. Cellular growth was correlated with an increase in endogenous NO levels after 21 days of culture, especially in treatments with NO donors. Our results demonstrated that the [Ru(NO)Hedta] complex could possibly be used as a NO donor in plants. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Colloidal suspensions of tin oxide nanocrystals were synthesized at room temperature by the hydrolysis reaction of tin chloride (II), in an ethanolic solution. The coarsening kinetics of such nanocrystals was studied by submitting the as-prepared suspensions to hydrothermal treatments at temperatures of 100, 150 and 200 degrees C for periods between 60 and 12,000 min. Transmission electron microscopy (TEM) was used to characterize the samples (i.e. distribution of nanocrystal size, average particle radius and morphology). The results show that the usual Ostwald ripening coarsening mechanism does not fit well the experimental data, which is an indicative that this process is not significant for SnO2 nanocrystals, in the studied experimental conditions. The morphology evolution of the nanocrystals upon hydrothermal treatment indicates that growth by oriented attachment (OA) should be significant. A kinetic model that describes OA growth is successfully applied to fit the data. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Tin dioxide nanoparticle suspensions were synthesized at room temperature by the hydrolysis reaction of tin chloride (II) dissolved in ethanol. The effect of the initial tin (II) ion concentration, in the ethanolic solution, on the mean particle size of the nanoparticles was studied. The Sn2+ concentration was varied from 0.0025 to 0.1 M, and all other synthesis parameters were kept fixed. Moreover, an investigation of the effect of agglomeration on the nanoparticle characteristics (i.e., size and morphology) was also done by modifying the pH of the SnO2 suspensions. The different samples were characterized by transmission electron microscopy, optical absorption spectroscopy in the ultraviolet range, and photoluminescence measurements. The results show that higher initial ion concentrations and agglomeration lead to larger nanoparticles. The concentration effect is explained by enhanced growth due to a higher supersaturation of the liquid medium. However, it was observed that the agglomeration of the nanoparticles in suspension induce coarsening by the oriented-attachment mechanism.
Resumo:
The effect of Cu2+ contents and of firing temperature on sintering and crystallite growth of nanocrystalline SnO2 xerogels was analyzed by thermoanalysis (mass loss (TG), linear shrinkage, and differential thermal analysis (DTA)), X-ray powder diffraction (XRPD), and EXAFS (extended X-ray absorption fine structures) measurements. Samples were prepared by two methods: (a) coprecipitation of a colloidal suspension from aqueous solution containing both Sn(IV) and Cu(II) ions and (b) grafting copper(II) species on the surface of tin pride gel. The thermoanalysis has shown that the shrinkage associated with the mass loss decreases by increasing the amount of copper. The EXAFS measurements carried out at the Cu K edge have evidenced the presence of copper in substitutional solid solution for the dried xerogel prepared with 0.7 mol % of copper, while for higher concentration of doping, copper has been observed also at the external surface of crystallites. The solid solution is metastable and copper migrates toward the surface during firing. The XRPD and DTA results have shown a recrystallization process near 320 degrees C, which leads to crystallite growth. The presence of copper segregated near the crystallite surface controls its growth.
Resumo:
The effect of acetylacetone (acac) complexing ligand on the formation and growth of tin oxide-based nanoparticles during thermohydrolysis at 70 degreesC of a tin precursor SnCl4-n(acac)(n) (0 less than or equal to n less than or equal to 2) solution was analyzed by in situ small-angle X-ray scattering. A. transparent and stable sol was obtained after 2 h of thermohydrolysis at 70 degreesC, allowing the quantitative determination of the particle volume distribution function and its variation with the reaction time. The number of colloidal particles for equivalent thermohydrolysis temperature and time decreases as the [acac]/[Sn] ratio in initial solution increases from 0.5 to 6. Instead, the amount of soluble species remaining in solution increases for increasing [acac]/[Sn] ratio within the same range. This indicates that increasing amounts of Sn-acetylacetone complexes partially prevent the hydrolysis and consequent formation of colloidal particles. The N-2 adsorption isotherm characterization of freeze-dried powders demonstrates that the average pore size is approximately equal to the average size (approximate to9 Angstrom) of the colloidal primary particles in the sol, and that the porosity and surface area (approximate to200 m(2) g(-1)) are independent of the acac content in the initial solution.
Resumo:
In this work, we report the synthesis of titanium oxide nanocrystals, especially the rutile TiO2 phase with nanorod morphology, by a method based on peroxotitanium complex decomposition. The results indicate that the anisotropic morphology reported for rutile TiO2 nanocrystals is related to the oriented attachment process. Despite the predominance of rutile nanocrystals at longer treatment times, the nanocrystals were obtained also in the anatase type, according to the degradation time adopted. XANES results evidenced the absence of structural correlation between the peroxytitanium complex and phase evolution, and the coexistence of the two phases strongly suggests a correlation of the oriented attachment mechanism and the rutile phase stabilization.
Resumo:
The laser ablation method was used for depositing porous nanocrystalline indium-tin oxide thin films for gas sensing applications. Samples were prepared at different pressures using three gases (O-2, 0.8N(2):0.2O(2), N-2) and heat-treated in the same atmosphere used for the ablation process. X-ray diffraction results show that the films are not oriented and the grain sizes are in the range between 15 and 40 nm. The grains are round shaped for all samples and the porosity of the films increases with the deposition pressure. The degree of sintering after heat treatment increases for lower oxygen concentrations, generating fractures on the surface of the samples. Film thicknesses are in the range of I pm for all gases as determined from scanning electron microscopy cross-sections. Electrical resistance varies between 36.3 ohm for the film made at 10 Pa pressure in N-2 until 9.35 x 10(7) ohm for the film made at 100 Pa in O-2. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Indium-tin oxide nanostructures were deposited by excimer laser ablation in a nitrogen atmosphere using catalyst-free oxidized silicon substrates at 500 degrees C. Up to 1 mbar, nanowires grew by the vapor-liquid-solid (VLS) mechanism, with the amount of liquid material decreasing as the deposition pressure increased. The nanowires present the single-crystalline cubic bixbyite structure, oriented < 100 >. For the highest pressure used, pyramids were formed and no sign of liquid material could be observed, indicating that these structures grew by a vapor-solid mechanism. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Anodic aluminium oxide (AAO) films exhibiting a homogeneous morphology of parallel pores perpendicular to the surface were prepared in a two-step anodization process and filled with copper by electrochemical deposition. The optimum growth conditions for the formation of freestanding AAO films with hexagonal compact array of cylindrical pores were studied by field emission scanning electron microscopy and small angle X-ray scattering. The results show well-defined periodic structures with uniform pores size distribution for films with pore diameters between 40 and 70 nm prepared using different voltages and temperatures during the second anodization step. X-ray photoelectron spectroscopy and X-ray diffraction analysis of AAO films filled with copper show the formation of nanowires with high structural order, exhibiting a preferential crystalline orientation along the (2 2 0) axis and only small fraction of copper oxides. The best results for textured Cu nanowires were obtained at a reduction potential of -300 mV. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Indium-tin oxide nanowires were deposited by excimer laser ablation onto catalyst-free oxidized silicon substrates at a low temperature of 500 degrees C in a nitrogen atmosphere. The nanowires have branches with spheres at the tips, indicating a vapor-liquid-solid (VLS) growth. The deposition time and pressure have a strong influence on the areal density and length of the nanowires. At the earlier stages of growth, lower pressures promote a larger number of nucleation centers. With the increase in deposition time, both the number and length of the wires increase up to an areal density of about 70 wires/mu m(2). After this point all the material arriving at the substrate is used for lengthening the existing wires and their branches. The nanowires present the single-crystalline cubic bixbyite structure of indium oxide, oriented in the [100] direction. These structures have potential applications in electrical and optical nanoscale devices.