977 resultados para oxidação de sulfetos
Resumo:
This paper summarizes the result of a degradation test of two azo-reactive dyes (Reactive Blue 214, Reactive Red 243) under UV irradiation in the presence of H2O2. Five different doses of hydrogen peroxide (0 mM, 5 mM, 10 mM, 20 mM and 30 mM) at constant initial concentration of the substrate (100 mg/L) were used. The radiation source were three 15 W-lamps. Complete destruction of the color of the solutions was attained in 40-50 min of irradiation. UV/H2O2 proved capable of complete discoloration and degradation of the above azo reactive dyes.
Resumo:
Proteins are potential targets for singlet molecular oxygen (¹O2) oxidation. Damages occur only at tryptophan, tyrosine, histidine, methionine, and cysteine residues at physiological pH, generating oxidized compounds such as hydroperoxides. Therefore, it is important to understand the mechanisms by which ¹O2, hydroperoxides and other oxidized products can trigger further damage. The improvement and development of new tools, such as clean sources of ¹O2 and isotopic labeling approaches in association with HPLC/mass spectrometry detection will allow one to elucidate mechanistic features involving ¹O2-mediated protein oxidation.
Resumo:
The potentialities of X-ray Absorption Near Edge Spectroscopy (XANES) of the N K edge (N K) obtained with the spherical grating monochromator beam line at the Brazilian National Synchrotron Light Laboratory are explored in the investigation of poly(aniline), nanocomposites and dyes. Through the analysis of N K XANES spectra of conducting polymers and many other dye compounds that are dominated by 1s®p* transitions, it was possible to correlate the band energy value with the nitrogen oxidation states. An extensive N K XANES spectral database was obtained, thus permitting the elucidation of the nature of different nitrogens present in the intercalated conducting polymers.
Resumo:
Copper speciation and behavior in different rivers located in the city of Curitiba were evaluated in this work. Sampling locations were selected to cover different levels of urbanization regarding their anthropogenic occupation and land use. Results showed that in highly-developed areas, both organic matter and dissolved sulfides were able to control copper speciation. Dissolved sulfide species were the major complexing agent in areas where dissolved oxygen levels are low. Finally, it was demonstrated that in urban areas anthropogenic factors such as sewage inputs and occupation of the drainage basin are the key aspects controlling copper dynamics and speciation in river waters.
Resumo:
Nb-substituted goethites have been prepared and characterized by Mössbauer spectroscopy, XRD, SEM and BET surface area measurements. Mössbauer and XRD analyses suggested that Nb replaces Fe3+ in the structure with duplet formation. The insertion of Nb into the goethite structure caused a significant increase in the BET surface area of the material. The prepared alpha-Fe1-xNb xOOH was investigated for the H2O2 decomposition to O2 and for the Fenton reaction to oxidize the dye methylene blue. It was observed that the introduction of Nb in to goethite produced a strong increase in the activity of oxidation of the dye contaminant by H2O2.
Resumo:
The present work investigated the effect of coprecipitation-oxidant synthesis on the specific surface area of perovskite-type oxides LaBO3 (B= Mn, Ni, Fe) for total oxidation of ethanol. The perovskite-type oxides were characterized by X-ray diffraction, nitrogen adsorption (BET method), thermogravimetric analysis (TGA-DTA), TPR and X-ray photoelectron spectroscopy (XPS). Through method involving the coprecipitation-oxidant was possible to obtain catalysts with different BET specific surface areas, of 33-51 m²/g. The results of the catalytic test confirmed that all oxides investigated in this work have specific catalytic activity for total oxidation of ethanol, though the temperatures for total conversion change for each transition metal.
Resumo:
In this work the effects of time and temperature of thermal treatments under reducing atmosphere (H2) on PtRu/C catalysts for the hydrogen oxidation reaction (HOR) in the presence of CO on a proton exchange membrane fuel cell (PEMFC) single cells have been studied. It can be seen that the increase of the treatment temperature leads to an increasing sintering of the catalyst particles with reduction of the active area, although the catalyst treated at 550 ºC presents more CO tolerance for the HOR.
Resumo:
The performance of proton exchange membrane fuel cells (PEMFC) with Pt-based anodes is drastically lowered when CO-containing hydrogen is used to feed the system, because of the strong adsorption of CO on platinum. In the present work the effects of the presence of a conversion layer of CO to CO2 composed by several M/C materials (where M = Mo, Cu, Fe and W) in gas diffusion anodes formed by Pt catalysts were investigated. The diffusion layers formed by Mo/C e W/C show good CO-tolerance, and this was attributed to the CO removal by parallel occurrence of the water-gas shift reaction and the so-called bifunctional mechanism.
Resumo:
In an effort to minimize the impact on the environment, removal of pollutants, such as phenolic compounds, from the industrial wastewater has great importance nowadays because of the high toxicity and low biodegradability of these compounds. This work discusses the different methods to remove these compounds from industrial wastewater, showing their advantages and disadvantages. Advanced Oxidation Process (AOPs) are presented as a promising technology for the treatment of wastewater containing phenolic compounds. Among the AOPs, photolysis, photocatalysis and the processes based on hydrogen peroxide and on ozone are discussed with emphasis on the combined processes and the oxidation mechanisms.
Resumo:
The reaction of ten cis-octalins and cis-octalones with thallium trinitrate (TTN) leads to different products, depending mainly on the substitution pattern of the substrate. Functionalized cis-hydrindanes were obtained from the reaction of 1,2,3,4,4a,5,8,8a-octahydro-4a-methylnaphthalene and of 1,2,3,4,4a,5,8,8a-octahydro-4a,7-dimethylnaphthalene with TTN in acetonitrile, whereas a cyclic ether was formed treating 1,2,3,4,4a,5,8,8a-octahydro-6,8a-dimethylnaphthalen-1-ol with TTN in trimethylorthoformate (TMOF).
Resumo:
The identification of the chemical compounds of the essential oil was performed with a gas chromatograph coupled to a mass spectrometer. The oil was left in the presence and absence of light and submitted to different temperatures to evaluate its stability. The yields of the major compounds were evaluated every fifteen days. Citral and myrcene, the major compounds of the essential oil, were degraded over time in both the presence and absence of light, but temperature only influenced the degradation of myrcene.
Resumo:
Materials based on pure iron oxide and impregnated with niobia (Nb2O5) were prepared. Their catalytic activities were tested on the oxidation of compounds present in the wastewater from the processing of coffee berries. Particularly caffeine and catechol were tested. The oxidation reactions were carried out with the following systems (i) UV/H2O2, (ii) photo-Fenton and (iii) heterogeneous Fenton. All materials were characterized with X-ray diffraction, Mössbauer and infrared spectroscopy. Iron was mainly in the forms of goethite and maghemite. The oxidation kinetics were monitored by UV-vis and the oxidation products were monitored by mass spectrometry. The photo-Fenton reaction presented highest oxidation efficiency, removing 98% of all caffeine and catechol contents.
Resumo:
Measurements of acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) were combined in order to verify the ecological hazard of contaminated sediments from the Santos-Cubatão Estuarine System (SE Brazil), which is located in one of the most industrialized areas in the Latin America. Intertidal sediments from the Morrão River estuary were collected seasonally in short cores. The redox conditions, organic matter contents and grain-size were the main controlling factors on SEM distribution. However, clear relationships among these variables and AVS were not observed. The molar SEM/AVS ratios were frequently > 1 especially in the summer, suggesting major metal bioavailability hazard in this humid hot season.
Resumo:
The AVS is defined operationally as acid volatile sulfide, which is a controlling phase on the partition of some metallic species in sediments. A Factorial design was evaluated by means of 16 experiments and using four variables: temperature, extraction time, N2 flow, and volume of the S2- collection solution. The factors that contributed to the efficiency of the process were the extraction time and the N2 flow. Trapping of S2- was efficient in AAB. The S2- was quantified using a potentiometric procedure. Recovery tests for S2- concentrations varying from 1×10-5 to 1×10-4 mol L-1 were in the range from 93 to 116%.
Resumo:
In this work synthetic niobia was used to promote the oxidation of methylene blue dye in aqueous medium. The niobia was characterized by N2 adsorption/desorption, XRD and TG measurements. The presence of reactive species on the niobia surface strongly increased the oxidation rate of the methylene blue dye. The reaction mechanism was studied by ESI-MS suggesting that the oxidation of the organic dye involve oxidizing species generated mainly after previous treatment with H2O2. It can be observed that the catalyst is a good material in the activation of gas (atmospheric oxygen) or liquid (hydrogen peroxide) oxidant agent with a total discoloration of the dye solution after only 1 h of reaction.