979 resultados para organic P


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Celebes Basin sediments from Ocean Drilling Program Site 767 (Leg 124) containing both marine and terrestrial organic matter have been investigated through palynofacies and geochemical analyses. The main degradation processes affecting or having affected organic matter are recorded in the sedimentary column as shown by ammonium, phosphate and sulfate pore-water profiles, and by petrographic and geochemical analyses of sediments. In the upper part of the sedimentary section (down to 200 mbsf), the decrease of the ratio of total organic carbon to sulfur (TOC/S) with depth, generally related to the sulfate reduction process, is accompanied by an increase of framboidal pyrite content in the marine organic matter, and by an increasing amount of amorphous marine organic matter relative to the total organic matter. However, as the terrestrial organic input also varies with depth, dilution effects are superimposed on diagenesis. This continental supply affects the TOC/S ratio by increasing total organic carbon and decreasing the ability of the bulk organic matter to be metabolized through sulfate reduction. A positive relationship between the TOC/P ratio and the amount of degraded organic matter of marine origin clearly displays the effect of an organic source on the composition of the sediment. Each lithostratigraphic unit possesses its own characteristics in terms of composition and preservation of organic matter. The effects of diagenesis can only be appreciated within a single lithostratigraphic unit and mainly affect the less-resistant marine organic matter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a detailed study of the co-diagenesis of Fe and P in hydrothermal plume fallout sediments from ~19°S on the southern East Pacific Rise. Three distal sediment cores from 340-1130 km from the ridge crest, collected during DSDP Leg 92, were analysed for solid phase Fe and P associations using sequential chemical extraction techniques. The sediments at all sites are enriched in hydrothermal Fe (oxyhydr)oxides, but during diagenesis a large proportion of the primary ferrihydrite precipitates are transformed to the more stable mineral form of goethite and to a lesser extent to clay minerals, resulting in the release to solution of scavenged P. However, a significant proportion of this P is retained within the sediment, by incorporation into secondary goethite, by precipitation as authigenic apatite, and by readsorption to Fe (oxyhydr)oxides. Molar P/Fe ratios for these sediments are significantly lower than those measured in plume particles from more northern localities along the southern East Pacific Rise, and show a distinct downcore decrease to a depth of ~12 m. Molar P/Fe ratios are then relatively constant to a depth of ~35 m. The Fe and P speciation data indicate that diagenetic modification of the sediments is largely complete by a depth of 2.5 m, and thus depth trends in molar P/Fe ratios can not solely be explained by losses of P from the sediment by diffusion to the overlying water column during early diagenesis. Instead, these sediments are likely recording changes in dissolved P concentrations off the SEPR, possibly as a result of redistribution of nutrients in response to changes in oceanic circulation over the last 10 million years. Furthermore, the relatively low molar P/Fe ratios observed throughout these sediments are not necessarily solely due to losses of scavenged P by diffusion to the overlying water column during diagenesis, but may also reflect post-depositional oxidation of pyrite originating from the volatile-rich vents of the southern East Pacific Rise. This study suggests that the molar P/Fe ratio of oxic Fe-rich sediments may serve as a proxy of relative changes in paleoseawater phosphate concentrations, particularly if Fe sulfide minerals are not an important component during transport and deposition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An estimate of rate of transformation of organic matter and regeneration of nutrients (in particular phosphorus) was calculated for different regions of the Sea of Okhotsk. The rate was estimated by means of rate of complete oxidation of organic matter to CO2 and H2O catalyzed by enzymes of the electron transport system (ETS) and rate of hydrolytic splitting of phosphate from organic phosphorus compounds catalyzed by alkaline phosphatase. Organic matter destruction rate was at its maximum on the shelf of Kamchatka and Sakhalin, as well as in the layer of maximum oxygen gradients in deep waters. It was found that zones of intensive primary production were characterized by high rates of phosphorus regeneration, which provided for 80% of primary production when concentration of mineral phosphorus was low.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glauconites and phosphates have been detected in almost all investigated samples at Sites 798 (uppermost Miocene or lower Pliocene to Pleistocene) and 799 (early middle Miocene to Pleistocene). Autochthonous occurrences appear in very minor quantities (generally below 0.2%) throughout the drilled sequences, whereas allochthonous accumulations are limited to the lower Pliocene or uppermost Miocene sequence at Site 798 (glauconites) and to the upper and middle Miocene sequence at Site 799 (upper and middle Miocene: glauconites; middle Miocene: phosphates). X-ray fluorescence, microprobe, and bulk chemical analyses indicate high variabilities in cations and anions and generally low oxide totals. This is probably related to the substitution of phosphate and fluoride aniors by hydroxide and carbonate anions in phosphates and to the depletion of iron, aluminum, and potassium cations and the enrichment in hydroxide and crystal water in glauconites. Gradients in pore-water contents of dissolved phosphate and fluoride at Sites 798 and 799 suggest a depth of phosphate precipitation between 30 and 50 mbsf, with fluoride as the limiting element for phosphate precipitation at Site 798. Phosphate and fluoride appear to be balanced at Site 799. Crude extrapolations indicate that the Japan-Sea sediments may have taken up approximately 7.2*10**10 g P total/yr during the Neogene and Pleistocene. This amount corresponds to approximately 0.3% of the estimated present-day global transfer of phosphorus into the sediments and suggests that the Japan Sea constitutes an average sink for this element. The two main carriers of phosphorus into the present Japan Sea are the Tshushima and the Liman currents, importing approximately 6.6*10**10 g P and 5.7*10**10 g P per year, respectively. Bulk chemical analyses suggest that at least 36% of P total in the sediments is organically bound phosphorus. This rather high value, which corresponds to the measured Japan-Sea deep-water P organic/P total ratios, probably reflects rapid transport of organic phosphorus into the depth of the Japan Sea.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This data set contains measurements of inorganic phosphorus in samples of soil solution collected in 2003 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below) that have been aggregated to seasonal values. In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. Manual soil matric potential measurements were used to regulate the vacuum system. Manual soil matric potential measurements were used to regulate the vacuum system. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved inorganic P (PO4P). Here volume-weighted mean values are provided as aggregated seasonal values (spring = March to May, summer = June to August, fall = September to November, winter = December to February) for 2003 in spring, fall, and winter. To calculate these values, the sampled volume of soil solution is used as weight for P concentrations of the respective sampling date. Inorganic phosphorus concentrations in the soil solution were measured photometrically with a continuous flow analyzer (CFA SAN++, Skalar [Breda, The Netherlands]). Ammonium molybdate catalyzed by antimony tartrate reacts in an acidic medium with phosphate and forms a phospho-molybdic acid complex. Ascorbic acid reduces this complex to an intensely blue-colored complex. As the molybdic complex forms under strongly acidic conditions, we could not exclude the hydrolysis of labile organic P compounds in our samples. Furthermore, the molybdate reaction is not sensitive for condensed phosphates. The detection limits of both TDP and PO4P were 0.02 mg P l-1 (CFA, Skalar).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This data set contains measurements of inorganic phosphorus in samples of soil solution collected in 2005 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below) that have been aggregated to seasonal values. In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. Manual soil matric potential measurements were used to regulate the vacuum system. Manual soil matric potential measurements were used to regulate the vacuum system. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved inorganic P (PO4P). Here volume-weighted mean values are provided as aggregated seasonal values (spring = March to May, summer = June to August, fall = September to November, winter = December to February) for 2005 in spring, and winter. To calculate these values, the sampled volume of soil solution is used as weight for P concentrations of the respective sampling date. Inorganic phosphorus concentrations in the soil solution were measured photometrically with a continuous flow analyzer (CFA Autoanalyzer [Bran&Luebbe, Norderstedt, Germany]). Ammonium molybdate catalyzed by antimony tartrate reacts in an acidic medium with phosphate and forms a phospho-molybdic acid complex. Ascorbic acid reduces this complex to an intensely blue-colored complex. As the molybdic complex forms under strongly acidic conditions, we could not exclude the hydrolysis of labile organic P compounds in our samples. Furthermore, the molybdate reaction is not sensitive for condensed phosphates. The detection limits of both TDP and PO4P were 0.04 mg P l-1 (Autoanalyzer, Bran&Luebbe).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This data set contains measurements of dissolved phosphorus (total dissolved nitrogen: TDP, dissolved inorganic phosphorus: PO4P and dissolved organic phosphorus: DOP) in samples of soil water collected in 2002 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. Manual soil matric potential measurements were used to regulate the vacuum system. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled bi-weekly, in 2002 at the 23.10.2002; 05.11.2002; 20.11.2002; 05.12.2002; and 28.12.2002, and analyzed for dissolved inorganic P (PO4P) and total dissolved phosphorus (TDP). Inorganic phosphorus concentrations in the soil solution were measured photometrically with a continuous flow analyzer (CFA SAN++, Skalar [Breda, The Netherlands]). Ammonium molybdate catalyzed by antimony tartrate reacts in an acidic medium with phosphate and forms a phospho-molybdic acid complex. Ascorbic acid reduces this complex to an intensely blue-colored complex. Total dissolved P in soil solution was analyzed by irradiation with UV and oxidation with K2S2O8 followed by reaction with ammonium molybdate (Skalar catnr. 503-553w/r). As the molybdic complex forms under strongly acidic conditions, we could not exclude the hydrolysis of labile organic P compounds in our samples. Furthermore, the molybdate reaction is not sensitive for condensed phosphates. The detection limits of both TDP and PO4P were 0.02 mg P l-1 (CFA, Skalar). Dissolved organic P (DOP) in soil solution was calculated as the difference between TDP and PO4P. In a low number of samples, TDP was equal to or smaller than PO4P; in these cases, DOP was assumed to be zero.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calculations of new production (NP) are made based on hydrochemical characteristics, recycling production (RP) is assessed on the basis of recycling of phosphorus and nitrogen. Photosynthesis, coupling with uptake of nutrients and development of minimum of silicate and maximum of oxygen, at the lower chlorophyll maximum in the pycnocline is discussed. In situ determination of production by C-14 and oxygen and vertical scanning of chlorophyll A have permitted to calculate assimilation numbers for all the biohydrochemical areas and to map primary production (PP) distribution in the Bering Sea. The total PP in the Bering Sea has been assessed as 6.4x10**8 t C/yr.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite intensive research on the different domains of the marine phosphorus (P) cycle during the last decades, frequently discussed open questions still exist especially on controlling factors for the benthic behaviour of P and its general distribution in sediment-pore water systems. Steady state or the internal balance of all relevant physical and (bio)geochemical processes are amongst the key issues. In this study we present and discuss an extended data set from surface sediments recovered from three locations on the NW African continental slope. Pore water data and results from sequential sediment extractions give clear evidence to the well-known close relationship between the benthic cycles of P and iron. Accordingly, most of the dissolved phosphate must have been released by microbially catalyzed reductive dissolution of iron (oxhydr)oxides. However, rates of release and association of P and iron, respectively, are not directly represented in profiles of element specific sediment compositions. Results from steady-state based transport-reaction modelling suggest that particle mixing due to active bioturbation, or rather a physical net downward transport of P associated to iron (oxyhydr)oxides, is an essential process for the balance of the inspected benthic cycles. This study emphasizes the importance of balancing analytical data for a comprehensive understanding of all processes involved in biogeochemical cycles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Globally, increasing demands for biofuels have intensified the rate of land-use change (LUC) for expansion of bioenergy crops. In Brazil, the world\'s largest sugarcane-ethanol producer, sugarcane area has expanded by 35% (3.2 Mha) in the last decade. Sugarcane expansion has resulted in extensive pastures being subjected to intensive mechanization and large inputs of agrochemicals, which have direct implications on soil quality (SQ). We hypothesized that LUC to support sugarcane expansion leads to overall SQ degradation. To test this hypothesis we conducted a field-study at three sites in the central-southern region, to assess the SQ response to the primary LUC sequence (i.e., native vegetation to pasture to sugarcane) associated to sugarcane expansion in Brazil. At each land use site undisturbed and disturbed soil samples were collected from the 0-10, 10-20 and 20-30 cm depths. Soil chemical and physical attributes were measured through on-farm and laboratory analyses. A dataset of soil biological attributes was also included in this study. Initially, the LUC effects on each individual soil indicator were quantified. Afterward, the LUC effects on overall SQ were assessed using the Soil Management Assessment Framework (SMAF). Furthermore, six SQ indexes (SQI) were developed using approaches with increasing complexity. Our results showed that long-term conversion from native vegetation to extensive pasture led to soil acidification, significant depletion of soil organic carbon (SOC) and macronutrients [especially phosphorus (P)] and severe soil compaction, which creates an unbalanced ratio between water- and air-filled pore space within the soil and increases mechanical resistance to root growth. Conversion from pasture to sugarcane improved soil chemical quality by correcting for acidity and increasing macronutrient levels. Despite those improvements, most of the P added by fertilizer accumulated in less plant-available P forms, confirming the key role of organic P has in providing available P to plants in Brazilian soils. Long-term sugarcane production subsequently led to further SOC depletions. Sugarcane production had slight negative impacts on soil physical attributes compared to pasture land. Although tillage performed for sugarcane planting and replanting alleviates soil compaction, our data suggested that the effects are short-term with persistent, reoccurring soil consolidation that increases erosion risk over time. These soil physical changes, induced by LUC, were detected by quantitative soil physical properties as well as by visual evaluation of soil structure (VESS), an on-farm and user-friendly method for evaluating SQ. The SMAF efficiently detected overall SQ response to LUC and it could be reliably used under Brazilian soil conditions. Furthermore, since all of the SQI values developed in this study were able to rank SQ among land uses. We recommend that simpler and more cost-effective SQI strategies using a small number of carefully chosen soil indicators, such as: pH, P, K, VESS and SOC, and proportional weighting within of each soil sectors (chemical, physical and biological) be used as a protocol for SQ assessments in Brazilian sugarcane areas. The SMAF and SQI scores suggested that long-term conversion from native vegetation to extensive pasture depleted overall SQ, driven by decreases in chemical, physical and biological indicators. In contrast, conversion from pasture to sugarcane had no negative impacts on overall SQ, mainly because chemical improvements offset negative impacts on biological and physical indicators. Therefore, our findings can be used as scientific base by farmers, extension agents and public policy makers to adopt and develop management strategies that sustain and/or improving SQ and the sustainability of sugarcane production in Brazil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Patterns of regeneration and burial of phosphorus (P) in the Baltic Sea are strongly dependent on redox conditions. Redox varies spatially along water depth gradients and temporally in response to the seasonal cycle and multidecadal hydrographic variability. Alongside the well-documented link between iron oxyhydroxide dissolution and release of P from Baltic Sea sediments, we show that preferential remineralization of P with respect to carbon (C) and nitrogen (N) during degradation of organic matter plays a key role in determining the surplus of bioavailable P in the water column. Preferential remineralization of P takes place both in the water column and upper sediments and its rate is shown to be redox-dependent, increasing as reducing conditions become more severe at greater water-depth in the deep basins. Existing Redfield-based biogeochemical models of the Baltic may therefore underestimate the imbalance between N and P availability for primary production, and hence the vulnerability of the Baltic to sustained eutrophication via the fixation of atmospheric N. However, burial of organic P is also shown to increase during multidecadal intervals of expanded hypoxia, due to higher net burial rates of organic matter around the margins of the deep basins. Such intervals may be characterized by basin-scale acceleration of all fluxes within the P cycle, including productivity, regeneration and burial, sustained by the relative accessibility of the water column P pool beneath a shallow halocline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We determined the sedimentary concentrations of phosphorus (P), barium (Ba), manganese (Mn), titanium (Ti), aluminum (Al), and uranium (U) for sediment samples from the southeast Pacific Nazca Ridge, Ocean Drilling Program Site 1237. This unique record extends to 31 Ma over 360 meters composite depth (mcd), recording depositional history as the site progressed eastward over its paleohistory. We sampled with a temporal resolution of ~0.2 m.y. throughout the sequence, equivalent to an average spacing of 1.63 m/sample. Concentrations of sequentially extracted components of P (oxide-associated, authigenic, organic, and detrital) increase toward the modern. Al/Ti ratios indicate that the background detrital source material is consistent with upper continental crust. U enrichment factors (U EFs) generally exceed crustal values and indicate slightly reducing environments. However, authigenic U precipitation can also be influenced by the organic carbon rain rate and may not be solely an indicator of redox conditions. Dramatic changes in Mn EFs at ~162 mcd, from values between 12 and 93 to values <12 after this depth, and a sharp color contact boundary lead us to believe that a paleoredox boundary from an oxygenated to a more reducing depositional environment occurred near this depth. Estimates of biogenic barite concentrations from a total sediment digestion technique (Ba excess) are greater than those from a barite extraction (Ba barite) for selected samples across the entire depth range. Applying a range of Ba/Ti ratios from different source materials to correct for detrital inputs does not change the lack of agreement with Ba barite concentrations. Reactive P (P reactive) concentrations (the sum of oxide-associated, authigenic, and organic P concentrations) increase toward the modern with values typically <12 µmol P/g from the base of our record through ~100 mcd, with a gradual increase to concentrations >15 µmol P/g. Ba excess follows the same general trends as Preactive, with concentrations <14 µmol Ba/g in the lower portion of the record to values >15 µmol Ba/g. Accumulation rate records of these proxies will be needed to infer paleoproductivity. P reactive/Ba excess ratios, an indicator of the relative burial of the nutrient P to organic carbon export, exhibit higher values, similar to modern, from the base of our record through ~180 mcd. The remainder of the record exhibits values lower than modern, indicating that organic carbon export to the sediments was higher relative to nutrient burial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon dioxide, ammonia, and reactive phosphate in the interstitial water of three sediment cores of the West African continental margin result from oxidation of sedimentary organic matter by bacterial sulfate reduction. The proposed model is a modification of one initially suggested by Richards (1965) for processes in anoxic waters: (CH2O)106 (NH3)8 (H3PO4) (0.7-0.2) + 53 SO4**2- =106 CO2 + 106 H20 + 8 NH3 + (0.7 - 0.2) H3PO4 + 53 S**2- The amount of reduced interstitial sulfate, the carbon-to-nitrogen-to-phosphorus atomic ratio of the sedimentary organic matter, as well as small amounts of carbon dioxide, which precipitated as interstitial calcium carbonate, are included in the general oxidation-reduction reaction. Preferential loss of nitrogen and phosphorus from organic matter close to the surface was recorded in both the interstitial water and sediment composition. It appeared that in deeper sections of the core organic carbon compounds were oxidized which were probably in an even lower oxidation state than that indicated by the proposed model. An estimated 2 % of the amount of organic matter still present was oxidized after it became incorporated into the sediment; whereas sulfide sulfur contents indicate that a much larger percentage (15-20%) seemed to have been subject to bacterial oxidation during the Pleistocene period, when a very thin oxidizing layer on the sediment allowed the above decomposition process to start relatively early favoured by almost fresh organic matter, and by almost unrestricted exchange of sulfate with the overlying water.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The distribution of mangrove biomass and forest structure along Shark River estuary in the Florida Coastal Everglades (FCE) has been correlated with elevated total phosphorus concentration in soils thought to be associated with storm events. The passage of Hurricane Wilma across Shark River estuary in 2005 allowed us to quantify sediment deposition and nutrient inputs in FCE mangrove forests associated with this storm event and to evaluate whether these pulsing events are sufficient to regulate nutrient biogeochemistry in mangrove forests of south Florida. We sampled the spatial pattern of sediment deposits and their chemical properties in mangrove forests along FCE sites in December 2005 and October 2006. The thickness (0.5 to 4.5 cm) of hurricane sediment deposits decreased with distance inland at each site. Bulk density, organic matter content, total nitrogen (N) and phosphorus (P) concentrations, and inorganic and organic P pools of hurricane sediment deposits differed from surface (0–10 cm) mangrove soils at each site. Vertical accretion resulting from this hurricane event was eight to 17 times greater than the annual accretion rate (0.30± 0.03 cm year−1) averaged over the last 50 years. Total P inputs from storm-derived sediments were equivalent to twice the average surface soil nutrient P density (0.19 mg cm−3). In contrast, total N inputs contributed 0.8 times the average soil nutrient N density (2.8 mg cm−3). Allochthonous mineral inputs from Hurricane Wilma represent a significant source of sediment to soil vertical accretion rates and nutrient resources in mangroves of southwestern Everglades. The gradient in total P deposition to mangrove soils from west to east direction across the FCE associated with this storm event is particularly significant to forest development due to the P-limited condition of this carbonate ecosystem. This source of P may be an important adaptation of mangrove forests in the Caribbean region to projected impacts of sea-level rise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we investigate phosphorus (P) and iron (Fe) cycling in sediments along a depth transect from within to well below the oxygen minimum zone (OMZ) in the northern Arabian Sea (Murray Ridge). Pore-water and solid-phase analyses show that authigenic formation of calcium phosphate minerals (Ca-P) is largely restricted to where the OMZ intersects the seafloor topography, likely due to higher depositional fluxes of reactive P. Nonetheless, increased ratios of organic carbon to organic P (Corg/Porg) and to total reactive P (Corg/Preactive) in surface sediments indicate that the overall burial efficiency of P relative to Corg decreases under the low bottom water oxygen concentrations (BWO) in the OMZ. The relatively constant Fe/Al ratio in surface sediments along the depth transect suggest that corresponding changes in Fe burial are limited. Sedimentary pyrite contents are low throughout the ~25 cm sediment cores at most stations, as commonly observed in the Arabian Sea OMZ. However, pyrite is an important sink for reactive Fe at one station in the OMZ. A reactive transport model (RTM) was applied to quantitatively investigate P and Fe diagenesis at an intermediate station at the lower boundary of the OMZ (bottom water O2: ~14 µmol/L). The RTM results contrast with earlier findings in showing that Fe redox cycling can control authigenic apatite formation and P burial in Arabian Sea sediment. In addition, results suggest that a large fraction of the sedimentary Ca-P is not authigenic, but is instead deposited from the water column and buried. Dust is likely a major source of this Ca-P. Inclusion of the unreactive Ca-P pool in the Corg/P ratio leads to an overestimation of the burial efficiency of reactive P relative to Corg along the depth transect. Moreover, the unreactive Ca-P accounts for ~85% of total Ca-P burial. In general, our results reveal large differences in P and Fe chemistry between stations in the OMZ, indicating dynamic sedimentary conditions under these oxygen-depleted waters.