919 resultados para optical solitons


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Summary form only given. Both dispersion management and the use of a nonlinear optical loop mirror (NOLM) as a saturable absorber can improve the performance of a soliton-based communication system. Dispersion management gives the benefits of low average dispersion while allowing pulses with higher powers to propagate, which helps to suppress Gordon-Haus timing jitter without sacrificing the signal-to-noise ratio. The NOLM suppresses the buildup of amplifier spontaneous emission noise and background dispersive radiation which, if allowed to interact with the soliton, can lead to its breakup. We examine optical pulse propagation in dispersion-managed (DM) transmission system with periodically inserted in-line NOLMs. To describe basic features of the signal transmission in such lines, we develop a simple theory based on a variational approach involving Gaussian trial functions. It, has already been proved that the variational method is an extremely effective tool for description of DM solitons. In the work we manage to include in the variational description the point action of the NOLM on pulse parameters, assuming that the Gaussian pulse shape is inherently preserved by propagation through the NOLM. The obtained results are verified by direct numerical simulations

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this first talk on dissipative structures in fiber applications, we extend theory of dispersion-managed solitons to dissipative systems with a focus on mode-locked fibre lasers. Dissipative structures exist at high map strengths leading to the generation of stable, short pulses with high energy. Two types of intra-map pulse evolutions are observed depending on the net cavity dispersion. These are characterized by a reduced model and semi-analytical solutions are obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the third and final talk on dissipative structures in fiber applications, we discuss mathematical techniques that can be used to characterize modern laser systems that consist of several discrete elements. In particular, we use a nonlinear mapping technique to evaluate high power laser systems where significant changes in the pulse evolution per cavity round trip is observed. We demonstrate that dissipative soliton solutions might be effectively described using this Poincaré mapping approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Summary form only given. Both dispersion management and the use of a nonlinear optical loop mirror (NOLM) as a saturable absorber can improve the performance of a soliton-based communication system. Dispersion management gives the benefits of low average dispersion while allowing pulses with higher powers to propagate, which helps to suppress Gordon-Haus timing jitter without sacrificing the signal-to-noise ratio. The NOLM suppresses the buildup of amplifier spontaneous emission noise and background dispersive radiation which, if allowed to interact with the soliton, can lead to its breakup. We examine optical pulse propagation in dispersion-managed (DM) transmission system with periodically inserted in-line NOLMs. To describe basic features of the signal transmission in such lines, we develop a simple theory based on a variational approach involving Gaussian trial functions. It, has already been proved that the variational method is an extremely effective tool for description of DM solitons. In the work we manage to include in the variational description the point action of the NOLM on pulse parameters, assuming that the Gaussian pulse shape is inherently preserved by propagation through the NOLM. The obtained results are verified by direct numerical simulations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the first time, we find the complex solitons for a quasi-one-dimensional Bose-Einstein condensate with two-and three-body interactions. These localized solutions are characterized by a power law behaviour. Both dark and right solitons can be excited in the experimentally allowed parameter domain, when two-and three-body interactions are,respectively, repulsive and attractive. The dark solitons travel with a constant speed, which is quite different from the Lieb mode, where profiles with different speeds, bounded above by sound velocity, can exist for specified interaction strengths. We also study the properties of these solitons in the presence of harmonic confinement with time-dependent nonlinearity and loss. The modulational instability and the Vakhitov-Kolokolov criterion of stability are also studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on spatial pattern formation, and appearances of 'optical bullet holes' in single-mode microcavities that are filled with liquid-crystals, when pumped above the cavity resonance frequency. These phenomena only occur beyond the bistability threshold. ©2002 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical investigation of the nonlinear copropagation of two optical pulses of different frequencies in a photonic crystal fiber is presented. Different phenomena are observed depending on whether the wavelength of the signal pulse is located in the normal or the anomalous dispersion region. In particular, it is found that the phenomenon of pulse trapping occurs when the signal wavelength is located in the normal dispersion region while the pump wavelength is located in the anomalous dispersion region. The signal pulse suffers cross-phase modulation by the Raman shifted soliton pulse and it is trapped and copropagates with the Raman soliton pulse along the fiber. As the input peak power of the pump pulse is increased, the red-shift of the Raman soliton is considerably enhanced with the simultaneous further blue-shift of the trapped pulse to satisfy the condition of group velocity matching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that bright-dark vector solitons are possible in biased photorefractive-photovoltaic crystals under steady-state conditions, which result from both the bulk photovoltaic effect and the spatially nonuniform screening of the external bias field. The analytical solutions of these vector solitons can be obtained in the case of \sigma\ much less than 1, where sigma is the parameter controlling the intensities of the two optical beams. In the limit of -1 < sigma much less than 1, these vector solitons can also be determined by use of simple numerical integration procedures. When the bulk photovoltaic effect is neglectable, these vector solitons are bright-dark vector screening solitons studied previously in the \sigma\ much less than 1 regime, and predict bright-dark vector screening solitons in the -1 < sigma less than or equal to 1 regime. When the external bias field is absent, these vector solitons predict bright-dark vector photovoltaic solitons in closed and open circuits. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a successful experimental observation of two-dimensional photovoltaic dark solitons in an anisotropic crystal with partially spatially incoherent light beams. This kind of solitons results from the bulk photovoltaic effect, which depends on the direction of propagation of the optical beam and on the orientation of the intensity gradient, with respect to the principal axes of the crystal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the modulation instability of quasi-plane-wave optical beams in biased photorefractive-photovoltaic crystals by globally treating the space-charge field. The modulation instability growth rate is obtained, which depends on the external bias field, on the bulk photovoltaic effect, and on the ratio of the optical beam's intensity to that of the dark irradiance. Our analysis indicates that this modulation instability growth rate is identical to the modulation instability growth rate studied previously in biased photorefractive-nonphotovoltaic crystals when the bulk photovoltaic effect is negligible for shorted circuits, and predicts the modulation instability growth rate in open- and closed-circuit photorefractive-photovoltaic crystals when the external bias field is absent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonlinear dynamics of longitudinal dust lattice waves propagating in a dusty plasma bi-crystal is investigated. A “diatomic”-like one-dimensional dust lattice configuration is considered, consisting of two distinct dust grain species with different charges and masses. Two different frequency dispersion modes are obtained in the linear limit, namely, an optical and an acoustic wave dispersion branch. Nonlinear solitary wave solutions are shown to exist in both branches, by considering the continuum limit for lattice excitations in different nonlinear potential regimes. For this purpose, a generalized Boussinesq and an extended Korteweg de Vries equation is derived, for the acoustic mode excitations, and their exact soliton solutions are provided and compared. For the optic mode, a nonlinear Schrödinger-type equation is obtained, which is shown to possess bright- (dark-) type envelope soliton solutions in the long (short, respectively) wavelength range. Optic-type longitudinal wavepackets are shown to be generally unstable in the continuum limit, though this is shown not to be the rule in the general (discrete) case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The discovery of the soliton is considered to be one of the most significant events of the twentieth century. The term soliton refers to special kinds of waves that can propagate undistorted over long distances and remain unaffected even after collision with each other. Solitons have been studied extensively in many fields of physics. In the context of optical fibers, solitons are not only of fundamental interest but also have potential applications in the field of optical fiber communications. This thesis is devoted to the theoretical study of soliton pulse propagation through single mode optical fibers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate dynamical effects of a bright soliton in Bose-Einstein condensed (BEC) systems with local and smooth space variations of the two-body atomic scattering length. It includes a discussion about the possible observation of a new type of standing nonlinear atomic matter wave in cigar-type traps. A rich dynamics is observed in the interaction between the soliton and an inhomogeneity. By considering an analytical time-dependent variational approach and also full numerical simulation of one-dimensional and three-dimensional Gross-Pitaevskii equations, we study processes such as trapping, reflection and transmission of the bright matter soliton due to the impurity. We also derive conditions for the collapse of the bright solitary wave, considering a quasi-one-dimensional BEC with attractive local inhomogeneity.