986 resultados para optical heterodyne technique
Resumo:
Mixing is a fundamental unit operation in the pharmaceutical industry to ensure consistent product quality across different batches. It is usually carried out in mechanically stirred tanks, with a large variety of designs according to the process requirements. A key aspect of pharmaceutical manufacturing is the extensive and meticulous cleaning of the vessels between runs to prevent the risk of contamination. Single-use reactors represent an increasing trend in the industry since they do not require cleaning and sterilization, reducing the need for utilities such as steam to sterilize equipment and the time between production batches. In contrast to traditional stainless steel vessels, single-use reactors consist of a plastic bag used as a vessel and disposed of after use. This thesis aims to characterize the fluid dynamics features and the mixing performance of a commercially available single-use reactor. The characterization employs a combination of various experimental techniques. The analysis starts with the visual observation of the liquid behavior inside the vessel, focusing on the vortex shape evolution at different impeller speeds. The power consumption is then measured using a torque meter to quantify the power number. Particle Image Velocimetry (PIV) is employed to investigate local fluid dynamics properties such as mean flow field and mean and rms velocity profiles. The same experimental setup of PIV is exploited for another optical measurement technique, the Planar Laser-Induced Fluorescence (PLIF). The PLIF measurements complete the characterization of the reactor with the qualitative visualization of the turbulent flow and the quantitative assessment of the system performance through the mixing time. The results confirm good mixing performances for the single-use reactor over the investigated impeller speeds and reveal that the filling volume plays a significant role in the fluid dynamics of the system.
Resumo:
A potential low cost novel sensing scheme for monitoring absolute strain is demonstrated. The scheme utilizes a synthetic heterodyne interrogation technique working in conjunction with a linearly chirped, sinusoidally tapered, apodized Bragg grating sensor. The interrogation technique is relatively simple to implement in terms of the required optics and the peripheral electronics. This scheme generates an output signal that has a quasi-linear response to absolute strain with a static strain resolution of ~±20 με and an operating range of ~1000 με.
Resumo:
A new approach, the four-window technique, was developed to measure optical phase-space-time-frequency tomography (OPSTFT). The four-window technique is based on balanced heterodyne detection with two local oscillator (LO) fields. This technique can provide independent control of position, momentum, time and frequency resolution. The OPSTFT is a Wigner distribution function of two independent Fourier transform pairs, phase-space and time-frequency. The OPSTFT can be applied for early disease detection.
Resumo:
A phase-only encryption/decryption scheme with the readout based on the zeroth-order phase-contrast technique (ZOPCT), without the use of a phase-changing plate on the Fourier plane of an optical system based on the 4f optical correlator, is proposed. The encryption of a gray-level image is achieved by multiplying the phase distribution obtained directly from the gray-level image by a random phase distribution. The robustness of the encoding is assured by the nonlinearity intrinsic to the proposed phase-contrast method and the random phase distribution used in the encryption process. The experimental system has been implemented with liquid-crystal spatial modulators to generate phase-encrypted masks and a decrypting key. The advantage of this method is the easy scheme to recover the gray-level information from the decrypted phase-only mask applying the ZOPCT. An analysis of this decryption method was performed against brute force attacks. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3223629]
Resumo:
We report magnetic and magneto-optical measurements of two Mn12 single-molecule magnet derivatives isolated in organic glasses. Field-dependent magnetic circular dichroism (MCD) intensity curves (hysteresis cycles) are found to be essentially identical to superconducting quantum interference device magnetization results and provide experimental evidence for the potential of the optical technique for magnetic characterization. Optical observation of magnetic tunneling has been achieved by studying the decay of the MCD signal at weak applied magnetic field
Resumo:
We report magnetic and magneto-optical measurements of two Mn12 single-molecule magnet derivatives isolated in organic glasses. Field-dependent magnetic circular dichroism (MCD) intensity curves (hysteresis cycles) are found to be essentially identical to superconducting quantum interference device magnetization results and provide experimental evidence for the potential of the optical technique for magnetic characterization. Optical observation of magnetic tunneling has been achieved by studying the decay of the MCD signal at weak applied magnetic field
Resumo:
We report the use of an optical fiber sensor to measure the soybean oil concentration in samples obtained from the mixture of pure biodiesel and commercial soybean oil. The operation of the device is based on the long-period grating sensitivity to the surrounding medium refractive index, which leads to measurable modifications in the grating transmission spectrum. The proposed analysis method results in errors in the oil concentration of 0.4% and 2.6% for pure biodiesel and commercial soybean oil, respectively. Techniques of total glycerol, dynamic viscosity, density, and hydrogen nuclear magnetic resonance spectroscopy were also employed to validate the proposed method.
Resumo:
The optical conductivity of the Anderson impurity mode l has been calculated by emp l oying the slave boson technique and an expansion in powers of l i N, where N is the d egeneracy o f the f electron level . This method has been used to find the effective mass of the conduction electrons for temperatures above and below the Kondo tempera ture. For low temperatures, the mass enhancement is f ound to be large while a t high t emperatures, the mass enhancement is sma ll. The conductivity i s f ound to be Drude like with frequency dependent effective mass and scattering time for low independent effective mass and temperatures and scattering time f requency for high t emperatures. The behavior of both the effective mass and the conductivity is in qualitative agreement with experimental r esul t s .
Resumo:
We report magnetic and magneto-optical measurements of two Mn12 single-molecule magnet derivatives isolated in organic glasses. Field-dependent magnetic circular dichroism (MCD) intensity curves (hysteresis cycles) are found to be essentially identical to superconducting quantum interference device magnetization results and provide experimental evidence for the potential of the optical technique for magnetic characterization. Optical observation of magnetic tunneling has been achieved by studying the decay of the MCD signal at weak applied magnetic field
Resumo:
We describe a one-port de-embedding technique suitable for the quasi-optical characterization of terahertz integrated components at frequencies beyond the operational range of most vector network analyzers. This technique is also suitable when the manufacturing of precision terminations to sufficiently fine tolerances for the application of a TRL de-embedding technique is not possible. The technique is based on vector reflection measurements of a series of easily realizable test pieces. A theoretical analysis is presented for the precision of the technique when implemented using a quasi-optical null-balanced bridge reflectometer. The analysis takes into account quantization effects in the linear and angular encoders associated with the balancing procedure, as well as source power and detector noise equivalent power. The precision in measuring waveguide characteristic impedance and attenuation using this de-embedding technique is further analyzed after taking into account changes in the power coupled due to axial, rotational, and lateral alignment errors between the device under test and the instruments' test port. The analysis is based on the propagation of errors after assuming imperfect coupling of two fundamental Gaussian beams. The required precision in repositioning the samples at the instruments' test-port is discussed. Quasi-optical measurements using the de-embedding process for a WR-8 adjustable precision short at 125 GHz are presented. The de-embedding methodology may be extended to allow the determination of S-parameters of arbitrary two-port junctions. The measurement technique proposed should prove most useful above 325 GHz where there is a lack of measurement standards.
Resumo:
Traditionally functional magnetic resonance imaging (fMRI) has been used to map activity in the human brain by measuring increases in the Blood Oxygenation Level Dependent (BOLD) signal. Often accompanying positive BOLD fMRI signal changes are sustained negative signal changes. Previous studies investigating the neurovascular coupling mechanisms of the negative BOLD phenomenon have used concurrent 2D-optical imaging spectroscopy (2D-OIS) and electrophysiology (Boorman et al., 2010). These experiments suggested that the negative BOLD signal in response to whisker stimulation was a result of an increase in deoxy-haemoglobin and reduced multi-unit activity in the deep cortical layers. However, Boorman et al. (2010) did not measure the BOLD and haemodynamic response concurrently and so could not quantitatively compare either the spatial maps or the 2D-OIS and fMRI time series directly. Furthermore their study utilised a homogeneous tissue model in which is predominantly sensitive to haemodynamic changes in more superficial layers. Here we test whether the 2D-OIS technique is appropriate for studies of negative BOLD. We used concurrent fMRI with 2D-OIS techniques for the investigation of the haemodynamics underlying the negative BOLD at 7 Tesla. We investigated whether optical methods could be used to accurately map and measure the negative BOLD phenomenon by using 2D-OIS haemodynamic data to derive predictions from a biophysical model of BOLD signal changes. We showed that despite the deep cortical origin of the negative BOLD response, if an appropriate heterogeneous tissue model is used in the spectroscopic analysis then 2D-OIS can be used to investigate the negative BOLD phenomenon.
Resumo:
In this work the quantitative theoretical treatment for two beam mode mismatched thermal lens spectrometry is applied to investigate the thermo-optical properties of chalcohalide (chalcolgenides and halides mixture) glasses. For the three kinds of glass studied the thermal diffusivity varied between 2.5 and 2.7 x 10(-3) cm(2) s(-1). Using these results and supposing Dulong-Petit specific heats we estimated the thermal conductivity and temperature ratio of optical path length (ds/dT) and temperature coefficient of refractive index (dn/dT). All samples had positive ds/dT(similar to 3.3 x 10(-6) K-1) and negative dn/dT (similar to -26 x 10(-6) K-1). The difference between these parameters and the change of signal are consequences of the expansion coefficient (13 x 10(-6) K-1) and refractive index (n similar to 2.6) of chalcohalides. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)