668 resultados para optical fibre sensors
Resumo:
We present results obtained since recording the first FBGs in microstructured polymer optical fibre (mPOF) and discuss the relative merits of Bragg grating based sensing with polymer optical fibre in general and mPOF in particular. © 2006 OSA/OFS 2006.
Resumo:
A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.
Resumo:
A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.
High stress monitoring of prestressing tendons in nuclear concrete vessels using fibre-optic sensors
Resumo:
Maintaining the structural health of prestressed concrete nuclear containments is a key element in ensuring nuclear reactors are capable of meeting their safety requirements. This paper discusses the attachment, fabrication and characterisation of optical fibre strain sensors suitable for the prestress monitoring of irradiated steel prestressing tendons. The all-metal fabrication and welding process allowed the instrumented strand to simultaneously monitor and apply stresses up to 1300 MPa (80% of steel's ultimate tensile strength). There were no adverse effects to the strand's mechanical properties or integrity. After sensor relaxation through cyclic stress treatment, strain transfer between the optical fibre sensors and the strand remained at 69%. The fibre strain sensors could also withstand the non-axial forces induced as the strand was deflected around a 4.5 m bend radius. Further development of this technology has the potential to augment current prestress monitoring practices, allowing distributed measurements of short- and long-term prestress losses in nuclear prestressed-concrete vessels. © 2014 Elsevier B.V.
Resumo:
We describe the use of high birefringence fibre forming a differential path interferometer for heterodyne fibre optic sensing applications. We firstly recover a low frequency strain amplitude of 1µe at 1Hz applied to a fibre Bragg grating sensor demonstrating a noise limited resolution of around 100ne/vHz. Secondly we interrogate a Mach-Zehnder interferometer sensor using the dual wavelength technique to detect a change in the Mach-Zehnder OPD of 200µm.
Resumo:
We present an implementation of high-sensitivity optical chemsensors based on FBGs UV-inscribed in D-shape and multimode fibres and sensitized by HF-etching treatment, demonstrating a capability of detecting chemical concentration changes as small as < 0.5%.
Resumo:
Fibre Bragg Grating (FBG) array sensors have been successfully embedded in aluminium alloy matrix by ultrasonic consolidation (UC) technique. The temperature and loading responses of the embedded FBG arrays have been systematically characterised. The embedded grating sensors exhibit an average temperature sensitivity of ~36pm/°C, which is three times higher than that of normal FBGs, and a loading responsivity of ~0.1nm/kg within the dynamic range from 0kg to 3kg. This initial experiment clearly demonstrates that FBG array sensors can be embedded in metal matrix together with other passive and active fibres to fabricate smart materials to monitor the operation and health of engineering structures.
Resumo:
The sensitivity of a fibre Bragg grating (FBG) sensor fabricated in polymer optical fibre (POF) to hydrostatic pressure was investigated for the first time. In this initial investigative work a reflected Bragg response of a FBG fabricated in multimode microstructured POF (MMmPOF) was monitored, whilst the hydrostatic pressure was increased up to 10MPa. Positive sensitivities were observed, meaning a positive wavelength shift to increasing pressure, as opposed to negative sensitivities monitored when using a FBG sensor fabricated in silica optical fibre. The FBG sensors fabricated in the MMmPOF gave fractional changes in wavelength and hence sensitivities of at least 64.05×10-6/MPa, which is some 25 times larger than the -2.50×10-6/MPa sensitivity of a FBG sensor fabricated in silica optical fibre that was measured in this work. Furthermore this work highlighted a decrease in sensitivity of the FBG sensor fabricated in the MMmPOF by some 50% by sealing the holes of the mPOF at the tip of the fibre with an adhesive. This offers the potential to tailor the response of the sensor to hydrostatic pressure.
Resumo:
Recently, we have extended fibre grating devices in to mid-IR range. Fibre Bragg gratings (FBGs) and long-period gratings (LPGs) with spectral responses from near-IR (800nm) to mid-IR ( ∼ 2μm) have been demonstrated with transmission loss as strong as 10-20dB. 2μm FBG and LPG showed temperature and refractive index (RI) sensitivities of ∼ 91pm/°C and 357nm/RIU respectively. Finally, we have performed a bio sensing experiment by monitoring the degradation of foetal bovine serum at room temperature. The results encouragingly show that the mid-IR LPGs can be an ideal biosensor platform as they have high RI sensitivity and can be used to detect concentration change of bio-samples. © 2012 SPIE.
Resumo:
The stress sensitivity of polymer optical fibre (POF) based Fabry-Perot sensors formed by two uniform Bragg gratings with finite dimensions is investigated. POF has received high interest in recent years due to its different material properties compared to its silica counterpart. Biocompatibility, a higher failure strain and the highly elastic nature of POF are some of the main advantages. The much lower Young’s modulus of polymer materials compared to silica offers enhanced stress sensitivity to POF based sensors which renders them great candidates for acoustic wave receivers and any kind of force detection. The main drawback in POF technology is perhaps the high fibre loss. In a lossless fibre the sensitivity of an interferometer is proportional to its cavity length. However, the presence of the attenuation along the optical path can significantly reduce the finesse of the Fabry-Perot interferometer and it can negatively affect its sensitivity at some point. The reflectivity of the two gratings used to form the interferometer can be also reduced as the fibre loss increases. In this work, a numerical model is developed to study the performance of POF based Fabry-Perot sensors formed by two uniform Bragg gratings with finite dimensions. Various optical and physical properties are considered such as grating physical length, grating effective length which indicates the point where the light is effectively reflected, refractive index modulation of the grating, cavity length of the interferometer, attenuation and operating wavelength. Using this model, we are able to identify the regimes in which the PMMA based sensor offer enhanced stress sensitivity compared to silica based one.
Resumo:
Polymer optical fibre (POF) is a relatively new and novel technology that presents an innovative approach for ultrasonic endoscopic applications. Currently, piezo electric transducers are the typical detectors of choice, albeit possessing a limited bandwidth due to their resonant nature and a sensitivity that decreases proportionally to their size. Optical fibres provide immunity from electromagnetic interference and POF in particular boasts more suitable physical characteristics than silica optical fibre. The most important of these are lower acoustic impedance, a reduced Young's Modulus and a higher acoustic sensitivity than single-mode silica fibre at both 1 MHz and 10 MHz. POF therefore offers an interesting alternative to existing technology. Intrinsic fibre structures such as Bragg gratings and Fabry-Perot cavities may be inscribed into the fibre core using UV lasers. These gratings are a modulation of the refractive index of the fibre core and provide the advantages of high reflectivity, customisable bandwidth and point detection. We present a compact in fibre ultrasonic point detector based upon a POF Bragg grating (POFBG) sensor. We demonstrate that the detector is capable of leaving a laboratory environment by using connectorised fibre sensors and make a case for endoscopic ultrasonic detection through use of a mounting structure that better mimics the environment of an endoscopic probe. We measure the effects of water immersion upon POFBGs and analyse the ultrasonic response for 1, 5 and 10 MHz.