962 resultados para octadecyl trimethylammonium bromide
Resumo:
The stability of the complex of cationic lipid with nucleic acid, especially when facing serum, is crucial for the efficiency of gene delivery. Here, we demonstrated that the stability of the complex of didodecyldimethylammonium bromide (DDAB, a cationic lipid) with DNA in the presence of serum dramatically increased after coating DDAB onto the surface of the gold nanoparticles. The stability of the complex was demonstrated with dye intercalation assay, and agarose gel electrophoresis.
Resumo:
Submicrometer zinc oxide (ZnO) with different morphologies including spindle-like, pencil-like, branch rod-like and frizzy flower-like shapes, have been hydrothermally synthesized in mixed solvents of ethanol and water at 140 degrees C. It was found that the volumes of added ammonia, surfactant (cetyltrimethylammonium bromide, CTAB), and mixed solvent play crucial roles in morphological control of ZnO nanostructures. Increasing the volume of ammonia added to the reaction system, the shape of ZnO evolves from spindle into branch rod-like. Synergetic influence between CTAB and ammonia can only be observed at high concentration of ammonia.
Resumo:
Langmuir-Blodgett (LB) films of octadecylammonium octadecanoate (C(18)H(37)j7NH(3)(+)C(17)H(35)COO(-),ODASA) and octadecylammonium octadecanoate-d(35) (C18H37+NH3+C17D35COO-, ODASA-d(53)) were prepared and their thermal behaviors were investigated by variable-temperature Fourier transform infrared transmission spectroscopy. It was found that the two hydrocarbon chains of ODASA molecule in LB films are highly ordered while that protonated (H) chain in ODASA-d(35) is partially disordered with some gauche conformers introduced at room temperature.
Resumo:
Single-crystal Au nanosheets and fcc gold nanocrystals of uniform size were synthesized by a novel and simple route. The results of field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) indicated the formation of the single-crystal structure of gold nanosheets and fcc nanocrystals. Energy-dispersive analysis of X-ray (EDAX) showed absorbance of cetyltrimethylammonium bromide (CTAB) molecules onto the surface of gold nanostructures.
Resumo:
Ionic liquid monomer 1-vinyl-3-ethylimidazolium bromide (ViEtIM(+)Br(-)) was first used to copolymerize with acrylonitrile (AN) successfully under various conditions. This was achieved with azobisisobutyronitrile as the initiator and dimethyl sulfoxide as the solvent. The kinetics of this copolymerization were studied. The values of the monomer apparent reactivity ratios were calculated by the Kelen-Tudos method. The apparent reactivity ratios of ViEtIM(+)Br(-) (r(ViEtIM+Br-)) and AN (r(AN)) were similar at polymerization conversions of less than 10%, (r(AN) = 0.954, r(ViEtIM+Br-) = 0.976). The copolymers were obtained with high molecular weights and high hydrophilicides. The copolymers were characterized by H-1-NMR, differential scanning calorimetry, and thermogravimetric analysis. These copolymers may be potentially useful in the preparation of precursor fibers and carbon fibers.
Resumo:
The effect of template phase on the structures of as-synthesized silica nanoparticles with fragile DDAB vesicles as templates is reported. It is found that the template phase plays a critical role in the growth process of silica: the unstable DDAB vesicles in liquid-crystalline phase often lead to the formation of mesostructured solid spheres, and the rather stable DDAB vesicles in gel phase lead to the formation of hollow spheres with less mesostructures.
Resumo:
Didodecyldimethylammonium bromide (DDAB) lipid bilayer-protected gold nanoparticles (AuNPs), which were stable and hydrophilic, were synthesized by in situ reduction of HAuCl4 with NaBH4 in an aqueous medium in the presence of DDAB. As-prepared nanoparticles were characterized by UV-vis spectra, transmission electron microscopy, dynamic light scattering analysis, and X-ray photoelectron spectroscopy. All these data supported the formation of AuNPs. Fourier transform infrared spectroscopy (FTIR) and differential thermal analysis/thermogravimetric analysis data revealed that DDAB existed in a bilayer structure formed on the particle surface, resulting in a positively charged particle surface. The FTIR spectra also indicated that the DDAB bilayer coated on the surface of AuNPs was probably in the ordered gel phase with some end-gauche defects. On the basis of electrostatic interactions between such AuNPs and anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS), we successfully fabricated (PSS/AuNP)(n) multilayers on a cationic polyelectrolyte poly(ethylenimine) coated indium tin oxide substrate via the layer-by-layer self-assembly technique and characterized as-formed multilayers with UV-vis spectra and atomic force microscopy.
Resumo:
Scanned probe oxidation (SPO) nanolithography has been performed with an atomic force microscope (AFM) on an octadecyl-terminated silicon (111) surface to create protuberant oxide line patterns under ambient conditions in contact mode. The kinetic investigations of this SPO process indicate that the oxide line height increases linearly with applied voltage and decreases logarithmically with writing, speed. The oxide line width also tends to vary with the same law. The ambient humidity and the AFM tip state can remarkably influence this process, too. As compared with traditional octadecylsilated SiO2/Si substrate, such a substrate can guarantee the SPO with an obviously lowered voltage and a greatly increased writing speed. This study demonstrates that such alkylated silicon is a promising silicon-based substrate material for SPO nanolithography.
Resumo:
An experimentally simple and inexpensive catalyst system based on hexabutylguanidinium/ZnBr, has been developed for the coupling of carbon dioxide and epoxides to form cyclic carbonates with significant catalytic activity under mild reaction conditions without using additional organic solvents (e.g. the turnover frequencies (TOF, h(-1)) values as high as 6.6 x 10(3) h(-1) for styrene oxide and 1.01 x 10(4) h(-1) for epichlorohydrin). This catalyst system also offers the advantages of recyclability and reusability. Therefore, it is a very effective, environmentally benign, and simple catalytic process. The special steric and electrophilic characteristics of hexabutylguanidinium bromide ionic liquid result in the prominent performance of this novel catalyst system.
Resumo:
In this article, cetyltrimethylammonium bromide (CTAB)-capped gold nanoparticles were synthesized successfully by using CTAB as a phase-transfer catalyst and stabilizer simultaneously in a two-phase toluene/water system. The as-prepared gold nanoparticles were characterized and analyzed by virtue of X-ray photoelectron spectroscopy, UV-visible absorbance spectroscopy, and infrared spectroscopy. The particle size information and collective self-assembling properties of the CTAB-capped gold nanoparticles on carbon-coated copper grid and mica were evaluated by transmission electron microscopy and atomic force microscopy, respectively. As a result it is demonstrated that the 3-D CTAB monolayers on a gold cluster are in the disordered liquid state. The interparticle spacing can be controlled either physically by the inherent particle-to-particle interactions or chemically by molecular linker. The assembly of both nanoparticles and linker-bridged nanonetworks on mica follows a hydrophobic interaction mechanism.
Resumo:
Bilayer lipid membranes ( BLM) formed from didode-cyldimethylammonium bromide were made on the freshly exposed surface of a glassy carbon (GC) and were demonstrated by the ac impedance spectroscopy. The ion channels of membrane properties induced by PF6- were studied by the cyclic voltammetric methods. Experimental results indicated that the ion channel of BLM was open in the presence of the PF6- due to the interaction of PF6- with the BLM, while it was switched off in the absence of PF6-. Because the ion channel behavior was affected by the concentration of PF6-, a sensor for PF6- can be developed.
Resumo:
Infrared spectrum of 2-octadecyl-7,7,8,8-tetracyanoquinodimethane was dealt with 2nd-derivative and deconvolution methods. It was first discovered that the band near 2849 cm(-1) assigned to the CH2 Symmetric stretching mode splited into two bands and this splitting might result from the coexistence of two kinds of conformations of CH2 in the hydrocarbon chain.