985 resultados para ocean waves
Resumo:
Bottom hinged oscillating wave surge converters are known to be an efficient method of extracting power from ocean waves. The present work deals with experimental and numerical studies of wave interactions with an oscillating wave surge converter. It focuses on two aspects: (1) viscous effects on device performance under normal operating conditions; and (2) effects of slamming on device survivability under extreme conditions. Part I deals with the viscous effects while the extreme sea conditions will be presented in Part II. The numerical simulations are performed using the commercial CFD package ANSYS FLUENT. The comparison between numerical results and experimental measurements shows excellent agreement in terms of capturing local features of the flow as well as the dynamics of the device. A series of simulations is conducted with various wave conditions, flap configurations and model scales to investigate the viscous and scaling effects on the device. It is found that the diffraction/radiation effects dominate the device motion and that the viscous effects are negligible for wide flaps.
Resumo:
This thesis revealed the most importance factors shaping the distribution, abundance and genetic diversity of four marine foundation species. Environmental conditions, particularly sea temperatures, nutrient availability and ocean waves, played a primary role in shaping the spatial distribution and abundance of populations, acting on scales varying from tens of meters to hundreds of kilometres. Furthermore, the use of Species Distribution Models (SDMs) with biological records of occurrence and high-resolution oceanographic data, allowed predicting species distributions across time. This approach highlighted the role of climate change, particularly when extreme temperatures prevailed during glacial and interglacial periods. These results, when combined with mtDNA and microsatellite genetic variation of populations allowed inferring for the influence of past range dynamics in the genetic diversity and structure of populations. For instance, the Last Glacial Maximum produced important shifts in species ranges, leaving obvious signatures of higher genetic diversities in regions where populations persisted (i.e., refugia). However, it was found that a species’ genetic pool is shaped by regions of persistence, adjacent to others experiencing expansions and contractions. Contradicting expectations, refugia seem to play a minor role on the re(colonization) process of previously eroded populations. In addition, the available habitat area for expanding populations and the inherent mechanisms of species dispersal in occupying available habitats were also found to be fundamental in shaping the distributions of genetic diversity. However, results suggest that the high levels of genetic diversity in some populations do not rule out that they may have experienced strong genetic erosion in the past, a process here named shifting genetic baselines. Furthermore, this thesis predicted an ongoing retraction at the rear edges and extinctions of unique genetic lineages, which will impoverish the global gene pool, strongly shifting the genetic baselines in the future.
Resumo:
Generally, ocean waves are thought to act as a drag on the surface wind so that momentum is transferred downwards, from the atmosphere into the waves. Recent observations have suggested that when long wavelength waves, characteristic of remotely generated swell, propagate faster than the surface wind momentum can also be transferred upwards. This upward momentum transfer acts to accelerate the near-surface wind, resulting in a low-level wave-driven wind jet. Previous studies have suggested that the sign reversal of the momentum flux is well predicted by the inverse wave age, the ratio of the surface wind speed to the speed of the waves at the peak of the spectrum. ECMWF ERA-40 data has been used here to calculate the global distribution of the inverse wave age to determine whether there are regions of the ocean that are usually in the wind-driven wave regime and others that are generally in the wave-driven wind regime. The wind-driven wave regime is found to occur most often in the mid-latitude storm tracks where wind speeds are generally high. The wave-driven wind regime is found to be prevalent in the tropics where wind speeds are generally light and swell can propagate from storms at higher latitudes. The inverse wave age is also a useful indicator of the degree of coupling between the local wind and wave fields. The climatologies presented emphasise the non-equilibrium that exists between the local wind and wave fields and highlight the importance of swell in the global oceans.
Resumo:
This study investigates the impact of a full interactive ocean on daily initialised 15 day hindcasts of the Madden-Julian oscillation (MJO), measured against a Met Office Unified Model (MetUM) atmosphere control simulation (AGCM) during a 3 month period of the Year of Tropical Convection (YOTC). Results indicated that the coupled configuration (CGCM) extends MJO predictability over that of the AGCM, by up to 3-5 days. Propagation is improved in the CGCM, which we partly attribute to a more realistic phase relationship between sea surface temperature (SST) and convection. In addition, the CGCM demonstrates skill in representing downwelling oceanic Kelvin and Rossby waves which warm SSTs along their trajectory, with the potential to feed back on the atmosphere. These results imply that an ocean model capable of simulating internal ocean waves may be required to capture the full effect of air-sea coupling for the MJO.
Resumo:
The beachs of Santos are situated in Santos Bay, central portion of paulista coast, in São Paulo state. This beachs are frequently affected by cold fronts with winds and currents from the South. These fronts are responsible for the removal and transport of sediments (sand) in Santos beaches. In order to quantify this sedimentation the channels of Santos were analysed, due to their function as box colectors of sediments during storm events. The channels are filled by sands, which volume in channels 1 to 6 was estimated, by using the length, width and height of sand sedimented in the channels, in the event of 22-27 april 2005. The chanels 2, 3 and 1 presented the larger volumes of sands, confirming that the central and SW portion of the beaches of Santos present higher levels of sedimentation or re-sedimentation. That is due to the transport by ocean waves and currents and currents from the Channel of the Port of Santos. This central portion suffer invasion of marine water over street and buildings, caracterizated of geological rise area.
Resumo:
Planetary waves are key to large-scale dynamical adjustment in the global ocean as they transfer energy from the east to the west side of oceanic basins; they connect the forcing in the ocean interior with the variability at its boundaries: and they change the local heat content, thus coupling oceanic, atmospheric, and biological processes. Planetary waves, mostly of the first baroclinic mode, are observed as distinctive patterns in global time series of sea surface height anomaly (SSHA) and heat storage. The goal of this study is to compare and validate large-scale SSHA signals from coupled ocean-atmosphere general circulation Model for Interdisciplinary Research on Climate (MIROC) with TOPEX/POSEIDON satellite altimeter observations. The last decade of the models` time series is selected for comparison with the altimeter data. The wave patterns are separated from the meso- and large-scale SSHA signals by digital filters calibrated to select the same spectral bands in both model and altimeter data. The band-wise comparison allows for an assessment of the model skill to simulate the dynamical components of the observed wave field. Comparisons regarding both the seasonal cycle and the Rossby wave Held differ significantly among basins. When carried within the same basin, differences can occur between equal latitudes in opposite hemispheres. Furthermore, at some latitudes the MIROC reproduces biannual, annual and semiannual planetary waves with phase speeds and average amplitudes similar to those observed by the altimeter, but with significant differences in phase. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Global climate change in recent decades has strongly influenced the Arctic generating pronounced warming accompanied by significant reduction of sea ice in seasonally ice-covered seas and a dramatic increase of open water regions exposed to wind [Stephenson et al., 2011]. By strongly scattering the wave energy, thick multiyear ice prevents swell from penetrating deeply into the Arctic pack ice. However, with the recent changes affecting Arctic sea ice, waves gain more energy from the extended fetch and can therefore penetrate further into the pack ice. Arctic sea ice also appears weaker during melt season, extending the transition zone between thick multi-year ice and the open ocean. This region is called the Marginal Ice Zone (MIZ). In the Arctic, the MIZ is mainly encountered in the marginal seas, such as the Nordic Seas, the Barents Sea, the Beaufort Sea and the Labrador Sea. Formed by numerous blocks of sea ice of various diameters (floes) the MIZ, under certain conditions, allows maritime transportation stimulating dreams of industrial and touristic exploitation of these regions and possibly allowing, in the next future, a maritime connection between the Atlantic and the Pacific. With the increasing human presence in the Arctic, waves pose security and safety issues. As marginal seas are targeted for oil and gas exploitation, understanding and predicting ocean waves and their effects on sea ice become crucial for structure design and for real time safety of operations. The juxtaposition of waves and sea ice represents a risk for personnel and equipment deployed on ice, and may complicate critical operations such as platform evacuations. The risk is difficult to evaluate because there are no long-term observations of waves in ice, swell events are difficult to predict from local conditions, ice breakup can occur on very short time-scales and wave-ice interactions are beyond the scope of current forecasting models [Liu and Mollo-Christensen, 1988,Marko, 2003]. In this thesis, a newly developed Waves in Ice Model (WIM) [Williams et al., 2013a,Williams et al., 2013b] and its related Ocean and Sea Ice model (OSIM) will be used to study the MIZ and the improvements of wave modeling in ice infested waters. The following work has been conducted in collaboration with the Nansen Environmental and Remote Sensing Center and within the SWARP project which aims to extend operational services supporting human activity in the Arctic by including forecast of waves in ice-covered seas, forecast of sea-ice in the presence of waves and remote sensing of both waves and sea ice conditions. The WIM will be included in the downstream forecasting services provided by Copernicus marine environment monitoring service.
Resumo:
We present a remote sensing observational method for the measurement of the spatio-temporal dynamics of ocean waves. Variational techniques are used to recover a coherent space-time reconstruction of oceanic sea states given stereo video imagery. The stereoscopic reconstruction problem is expressed in a variational optimization framework. There, we design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal regularizers. A nested iterative scheme is devised to numerically solve, via 3-D multigrid methods, the system of partial differential equations resulting from the optimality condition of the energy functional. The output of our method is the coherent, simultaneous estimation of the wave surface height and radiance at multiple snapshots. We demonstrate our algorithm on real data collected off-shore. Statistical and spectral analysis are performed. Comparison with respect to an existing sequential method is analyzed.
Resumo:
La energía transportada por el oleaje a través de los océanos (energía undimotriz) se enmarca dentro de las denominadas energías oceánicas. Su aprovechamiento para generar energía eléctrica (o ser aprovechada de alguna otra forma) es una idea reflejada ya hace más de dos siglos en una patente (1799). Desde entonces, y con especial intensidad desde los años 70, ha venido despertando el interés de instituciones ligadas al I+D+i y empresas del sector energético y tecnológico, debido principalmente a la magnitud del recurso disponible. Actualmente se puede considerar al sector en un estado precomercial, con un amplio rango de dispositivos y tecnologías en diferente grado de desarrollo en los que ninguno destaca sobre los otros (ni ha demostrado su viabilidad económica), y sin que se aprecie una tendencia a converger un único dispositivo (o un número reducido de ellos). El recurso energético que se está tratando de aprovechar, pese a compartir la característica de no-controlabilidad con otras fuentes de energía renovable como la eólica o la solar, presenta una variabilidad adicional. De esta manera, diferentes localizaciones, pese a poder presentar recursos de contenido energético similar, presentan oleajes de características muy diferentes en términos de alturas y periodos de oleaje, y en la dispersión estadística de estos valores. Esta variabilidad en el oleaje hace que cobre especial relevancia la adecuación de los dispositivos de aprovechamiento de energía undimotriz (WEC: Wave Energy Converter) a su localización, de cara a mejorar su viabilidad económica. Parece razonable suponer que, en un futuro, el proceso de diseño de un parque de generación undimotriz implique un rediseño (en base a una tecnología conocida) para cada proyecto de implantación en una nueva localización. El objetivo de esta tesis es plantear un procedimiento de dimensionado de una tecnología de aprovechamiento de la energía undimotriz concreta: los absorbedores puntuales. Dicha metodología de diseño se plantea como un problema de optimización matemático, el cual se resuelve utilizando un algoritmo de optimización bioinspirado: evolución diferencial. Este planteamiento permite automatizar la fase previa de dimensionado implementando la metodología en un código de programación. El proceso de diseño de un WEC es un problema de ingería complejo, por lo que no considera factible el planteamiento de un diseño completo mediante un único procedimiento de optimización matemático. En vez de eso, se platea el proceso de diseño en diferentes etapas, de manera que la metodología desarrollada en esta tesis se utilice para obtener las dimensiones básicas de una solución de referencia de WEC, la cual será utilizada como punto de partida para continuar con las etapas posteriores del proceso de diseño. La metodología de dimensionado previo presentada en esta tesis parte de unas condiciones de contorno de diseño definidas previamente, tales como: localización, características del sistema de generación de energía eléctrica (PTO: Power Take-Off), estrategia de extracción de energía eléctrica y concepto concreto de WEC). Utilizando un algoritmo de evolución diferencial multi-objetivo se obtiene un conjunto de soluciones factibles (de acuerdo con una ciertas restricciones técnicas y dimensionales) y óptimas (de acuerdo con una serie de funciones objetivo de pseudo-coste y pseudo-beneficio). Dicho conjunto de soluciones o dimensiones de WEC es utilizado como caso de referencia en las posteriores etapas de diseño. En el documento de la tesis se presentan dos versiones de dicha metodología con dos modelos diferentes de evaluación de las soluciones candidatas. Por un lado, se presenta un modelo en el dominio de la frecuencia que presenta importantes simplificaciones en cuanto al tratamiento del recurso del oleaje. Este procedimiento presenta una menor carga computacional pero una mayor incertidumbre en los resultados, la cual puede traducirse en trabajo adicional en las etapas posteriores del proceso de diseño. Sin embargo, el uso de esta metodología resulta conveniente para realizar análisis paramétricos previos de las condiciones de contorno, tales como la localización seleccionada. Por otro lado, la segunda metodología propuesta utiliza modelos en el domino estocástico, lo que aumenta la carga computacional, pero permite obtener resultados con menos incertidumbre e información estadística muy útil para el proceso de diseño. Por este motivo, esta metodología es más adecuada para su uso en un proceso de dimensionado completo de un WEC. La metodología desarrollada durante la tesis ha sido utilizada en un proyecto industrial de evaluación energética preliminar de una planta de energía undimotriz. En dicho proceso de evaluación, el método de dimensionado previo fue utilizado en una primera etapa, de cara a obtener un conjunto de soluciones factibles de acuerdo con una serie de restricciones técnicas básicas. La selección y refinamiento de la geometría de la solución geométrica de WEC propuesta fue realizada a posteriori (por otros participantes del proyecto) utilizando un modelo detallado en el dominio del tiempo y un modelo de evaluación económica del dispositivo. El uso de esta metodología puede ayudar a reducir las iteraciones manuales y a mejorar los resultados obtenidos en estas últimas etapas del proyecto. ABSTRACT The energy transported by ocean waves (wave energy) is framed within the so-called oceanic energies. Its use to generate electric energy (or desalinate ocean water, etc.) is an idea expressed first time in a patent two centuries ago (1799). Ever since, but specially since the 1970’s, this energy has become interesting for R&D institutions and companies related with the technological and energetic sectors mainly because of the magnitude of available energy. Nowadays the development of this technology can be considered to be in a pre-commercial stage, with a wide range of devices and technologies developed to different degrees but with none standing out nor economically viable. Nor do these technologies seem ready to converge to a single device (or a reduce number of devices). The energy resource to be exploited shares its non-controllability with other renewable energy sources such as wind and solar. However, wave energy presents an additional short-term variability due to its oscillatory nature. Thus, different locations may show waves with similar energy content but different characteristics such as wave height or wave period. This variability in ocean waves makes it very important that the devices for harnessing wave energy (WEC: Wave Energy Converter) fit closely to the characteristics of their location in order to improve their economic viability. It seems reasonable to assume that, in the future, the process of designing a wave power plant will involve a re-design (based on a well-known technology) for each implementation project in any new location. The objective of this PhD thesis is to propose a dimensioning method for a specific wave-energy-harnessing technology: point absorbers. This design methodology is presented as a mathematical optimization problem solved by using an optimization bio-inspired algorithm: differential evolution. This approach allows automating the preliminary dimensioning stage by implementing the methodology in programmed code. The design process of a WEC is a complex engineering problem, so the complete design is not feasible using a single mathematical optimization procedure. Instead, the design process is proposed in different stages, so the methodology developed in this thesis is used for the basic dimensions of a reference solution of the WEC, which would be used as a starting point for the later stages of the design process. The preliminary dimensioning methodology presented in this thesis starts from some previously defined boundary conditions such as: location, power take-off (PTO) characteristic, strategy of energy extraction and specific WEC technology. Using a differential multi-objective evolutionary algorithm produces a set of feasible solutions (according to certain technical and dimensional constraints) and optimal solutions (according to a set of pseudo-cost and pseudo-benefit objective functions). This set of solutions or WEC dimensions are used as a reference case in subsequent stages of design. In the document of this thesis, two versions of this methodology with two different models of evaluation of candidate solutions are presented. On the one hand, a model in the frequency domain that has significant simplifications in the treatment of the wave resource is presented. This method implies a lower computational load but increased uncertainty in the results, which may lead to additional work in the later stages of the design process. However, use of this methodology is useful in order to perform previous parametric analysis of boundary conditions such as the selected location. On the other hand, the second method uses stochastic models, increasing the computational load, but providing results with smaller uncertainty and very useful statistical information for the design process. Therefore, this method is more suitable to be used in a detail design process for full dimensioning of the WEC. The methodology developed throughout the thesis has been used in an industrial project for preliminary energetic assessment of a wave energy power plant. In this assessment process, the method of previous dimensioning was used in the first stage, in order to obtain a set of feasible solutions according to a set of basic technical constraints. The geometry of the WEC was refined and selected subsequently (by other project participants) using a detailed model in the time domain and a model of economic evaluation of the device. Using this methodology can help to reduce the number of design iterations and to improve the results obtained in the last stages of the project.
Resumo:
In general, a major challenge for the exploitation of renewable energies is to improve their efficiency. In electricity generation from the energy of ocean waves, not unlike other technologies, the converter must be optimized to make the energy harvesting economically feasible. This paper proposes a passive tuning control strategy of a point absorber in which the power captured is maximized by controlling the electromagnetic force of the generator with a resistance emulation approach. The proposed strategy consists of mapping the optimal values for regular waves and applying them to irregular waves. This strategy is tested in a wave energy converter in which the generator is connected to a boost rectifier converter whose controller is designed to emulate a resistance. The power electronics system implemented is validated by comparing its performance with the case in which the generator is directly connected to a resistive load. The simulation results show the effectiveness of the proposed strategy as the maximum captured power is concentrated around the optimal values previously calculated and with the same behavior for both excitations.
Resumo:
Mediante a crescente necessidade de aumento na oferta de energia elétrica devido à constante elevação na demanda mundial, esta dissertação avalia o desempenho de um sistema conversor de energia de ondas marítimas em energia elétrica. O sistema em análise é o de coluna de água oscilante com turbina de dupla ação instalado na costa. Utiliza-se um modelo regular de ondas como perturbação à dinâmica de uma câmara semi-submersa gerando fluxo de ar através de uma turbina à ar de dupla ação. O sistema final é não linear e com parâmetros variantes no tempo. A dissertação investiga possibilidades para o aumento do rendimento da turbina em diferentes condições de mar através do método de simulação numérica. Após a modelagem física e matemática do sistema escolhido, inicia-se a síntese de um controlador proporcional derivativo para controle da pressão de ar na turbina em torno da pressão ideal de trabalho da mesma. A análise inclui o comparativo entre os resultados do sistema com e sem controlador e a avaliação de robustez utilizando ondas com amplitude variável. O trabalho apresenta ainda propostas de otimização do sistema para trabalhar em condições similares a região de Pecém no Brasil. Pelos resultados obtidos nas simulações, conclui-se que o rendimento e a robustez do sistema podem melhorar utilizando um sistema controlado. O rendimento do sistema poderá ainda ser otimizado para a região de instalação.
Resumo:
Beach profile line data collected from 32 profile sites along Long Beach Island, New Jersey. A total of 2,158 profile line surveys were examined, using empirical eigenfunction analysis and other measures of beach variability. Most profile lines have shown an accretionary trend since 1962 with rates between 2.3 and 0.24 meter per year in spite of erosion estimates due to sea level rise on the order of 0.68 meter per year. A great deal of variability in profile line change takes place along the beach, increasing from north to south, due to the location of profile lines relative to structures and offshore linear shoals. Detailed closely spaced profile lines taken over a year in a groin field near the north end of the island indicate littoral transport directions shift from north to south. Evidence of a littoral transport node near the north end of the groin field has been found. Net transport of the node is toward the south, but the rate could not be established due to lack of adequate wave data. Profile line variability within groin cells shows that single profile lines are not sufficient to determine the net change within a cell. The design of future beach monitoring studies should consider coastal structures, offshore bathymetry, the method of analysis, and the scales of processes under study. A coastal storm in November 1968 moved the MSL back as much as 22 meters; however, the beach recovered without artificial measures. The offshore bathymetry shows a series of shoreface-connected linear shoals at several locations along the island. Limited data show that these have remained stable and that most beach variability takes place in water shallower than 3 meters.
Resumo:
A comprehensive engineering analysis of the coastal sediment transport processes along a 42-kilometer segment of the North Carolina shoreline from Wrightsville Beach to Fort Fisher is presented. Included in the analysis is an interpretation of the littoral processes, longshore transport, and the behavior and success of beach nourishment projects at Wrightsville Beach and Carolina Beach, North Carolina. The historical position of the MLW, MSL, and MHW contours, relative to a fixed base line, is plotted for the period between 1964 and 1975. An equivalent volumetric erosion or accretion between successive surveys is determined by multiplying the average excursion distance of the contours by a constant of proportionality. The plots of excursion distance versus time for the MLW, MSL, and MHW contours also show the time response of the beach fills. This response is described by a mathematical function. The alongshore components of wave-induced energy flux are also determined within the study area through wave refraction analysis. This information, together with the information on volumetric change, is used in a sediment budget analysis to determine the coefficient of alongshore sediment transport and the inlet trapping characteristics. (Author).