983 resultados para nuclear localization sequence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Mitogen activated protein kinases (MAPK) play an essential role in integrating extra-cellular signals and intra-cellular cues to allow cells to grow, adapt to stresses, or undergo apoptosis. Budding yeast serves as a powerful system to understand the fundamental regulatory mechanisms that allow these pathways to combine multiple signals and deliver an appropriate response. To fully comprehend the variability and dynamics of these signaling cascades, dynamic and quantitative single cell measurements are required. Microscopy is an ideal technique to obtain these data; however, novel assays have to be developed to measure the activity of these cascades. RESULTS: We have generated fluorescent biosensors that allow the real-time measurement of kinase activity at the single cell level. Here, synthetic MAPK substrates were engineered to undergo nuclear-to-cytoplasmic relocation upon phosphorylation of a nuclear localization sequence. Combination of fluorescence microscopy and automated image analysis allows the quantification of the dynamics of kinase activity in hundreds of single cells. A large heterogeneity in the dynamics of MAPK activity between individual cells was measured. The variability in the mating pathway can be accounted for by differences in cell cycle stage, while, in the cell wall integrity pathway, the response to cell wall stress is independent of cell cycle stage. CONCLUSIONS: These synthetic kinase activity relocation sensors allow the quantification of kinase activity in live single cells. The modularity of the architecture of these reporters will allow their application in many other signaling cascades. These measurements will allow to uncover new dynamic behaviour that previously could not be observed in population level measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Long-term changes in synaptic plasticity require gene transcription, indicating that signals generated at the synapse must be transported to the nucleus. Synaptic activation of hippocampal neurons is known to trigger retrograde transport of transcription factor NF-κB. Transcription factors of the NF-κB family are widely expressed in the nervous system and regulate expression of several genes involved in neuroplasticity, cell survival, learning and memory. Principal Findings In this study, we examine the role of the dynein/dynactin motor complex in the cellular mechanism targeting and transporting activated NF-κB to the nucleus in response to synaptic stimulation. We demonstrate that overexpression of dynamitin, which is known to dissociate dynein from microtubules, and treatment with microtubule-disrupting drugs inhibits nuclear accumulation of NF-κB p65 and reduces NF-κB-dependent transcription activity. In this line, we show that p65 is associated with components of the dynein/dynactin complex in vivo and in vitro and that the nuclear localization sequence (NLS) within NF-κB p65 is essential for this binding. Conclusion This study shows the molecular mechanism for the retrograde transport of activated NF-κB from distant synaptic sites towards the nucleus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Importin-alpha is the nuclear import receptor that recognizes cargo proteins with nuclear localization sequences (NLSs). Tile study of NLS peptidomimetics can provide a better understanding of the requirements for the molecular recognition of cargo proteins by importin-alpha, and potentially engender a large number of applications in medicine. Importin-a was crystallized with a set of six NLS peptidomimetics, and X-ray diffraction data were collected in the range 2.1-2.5 angstrom resolution. Preliminary electron density calculations show that the ligands are present in the crystals. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In common with other members of the p120-catenin subclass of catenins, ARVCF-catenin appears to have multiple cellular and developmental functions. In Xenopus, our lab recently demonstrated that xARVCF- and Xp120-catenins are each essential for early vertebrate embryogenesis, being functionally linked to Rho-family GTPases (RhoA, Rac) and cadherin metabolic stability. For the project described here, the yeast two-hybrid system was employed to screen a Xenopus laevis neurula library for proteins that interact with xARVCF, resulting in the identification of the Xenopus homolog of Kazrin (xKazrin). Kazrin is a variably-spliced protein of unknown function that has been shown to interact with periplakin and envoplakin, components of desmosomal junctions. Kazrin's primary sequence is highly conserved across vertebrate species and is composed of an amino-terminal nuclear export sequence (NES), a carboxy-terminal nuclear localization sequence (NLS) and a central predicted coiled-coil domain. In vitro and in vivo authenticity tests demonstrated that xARVCF-catenin interacts directly with xKazrin via xARVCF's Armadillo and carboxy-terminal regions and xKazrin's coiled-coil domain. The interaction of xARVCF-catenin with xKazrin is specific and does not extend to the related Xp120-catenin. xKazrin co-localized with E-cadherin at sites of cell-cell contact and could be co-immunoprecipitated with components of the cadherin complex. xKazrin was also present in the cytoplasm and nucleus. Suggestive of a nuclear role, mutation of xKazrin's predicted NLS resulted in nuclear exclusion, while deletion of the predicted NES resulted in loss of sensitivity to nuclear export inhibitors. Within Xenopus embryos, xKazrin was expressed across all developmental stages and appeared at varying levels in adult tissues. Morpholino depletion of xKazrin from Xenopus embryos resulted in axial elongation abnormalities and loss of tissue integrity after neurulation. Over-expression of xKazrin had no effect, while over-expression of a NLS mutant resulted in a mild phenotype similar to that seen in xKazrin depleted embryos. Interestingly, the axial phenotype resulting from reduced xKazrin levels was largely rescuable by xARVCF over-expression. In conjunction with xARVCF-catenin, xKazrin has properties consistent with its function at cell-cell contact sites and in the nucleus. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

B-lymphocyte stimulator (BLyS also called BAFF), is a potent cell survival factor expressed in many hematopoietic cells. BLyS levels are elevated in the serum of non-Hodgkin lymphoma (NHL) patients, and have been reported to be associated with disease progression, and prognosis. To understand the mechanisms involved in BLyS gene expression and regulation, we examined expression, function, and regulation of the BLyS gene in B cell non-Hodgkin's lymphoma (NHL-B) cells. BLyS is constitutively expressed in aggressive NHL-B cells including large B cell lymphoma (LBCL) and mantle cell lymphoma (MCL) contributing to survival and proliferation of malignant B cells. Two important transcription factors, NF-κB and NFAT, were found to be involved in regulating BLyS expression through at least one NF-κB and two NFAT binding sites in the BLyS promoter. Further study indicates that the constitutive activation of NF-κB and BLyS in NHL-B cells forms a positive feedback loop contributing to cell survival and proliferation. In order to further investigate BLyS signaling pathway, we studied the function of BAFF-R, a major BLyS receptor, on B cells survival and proliferation. Initial study revealed that BAFF-R was also found in the nucleus, in addition to its presence on plasma membrane of B cells. Nuclear presentation of BAFF-R can be increased by anti-IgM and soluble BLyS treatment in normal peripheral B lymphocytes. Inhibition of BLyS expression decreases nuclear BAFF-R level in LBCL cells. Furthermore, we showed that BAFF-R translocated to nucleus through the classic karyopherin pathway. A candidate nuclear localization sequence (NLS) was identified in the BAFF-R protein sequence and mutation of this putative NLS can block BAFF-R entering nucleus and LBCL cell proliferation. Further study showed that BAFF-R co-localized with NF-κB family member, c-rel in the nucleus. We also found BAFF-R mediated transcriptional activity, which could be increased by c-rel. We also found that nuclear BAFF-R could bind to the NF-κB binding site on the promoters of NF-κB target genes such as BLyS, CD154, Bcl-xL, Bfl-1/A1 and IL-8. These findings indicate that BAFF-R may also promote survival and proliferation of normal B cells and NHL-B cells by directly functioning as a transcriptional co-factor with NF-κB family member. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Importin-alpha is the nuclear import receptor that recognizes cargo proteins with nuclear localization sequences (NLSs). Tile study of NLS peptidomimetics can provide a better understanding of the requirements for the molecular recognition of cargo proteins by importin-alpha, and potentially engender a large number of applications in medicine. Importin-a was crystallized with a set of six NLS peptidomimetics, and X-ray diffraction data were collected in the range 2.1-2.5 angstrom resolution. Preliminary electron density calculations show that the ligands are present in the crystals. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a sensitive, non-radioactive method to assess the interaction of transcription factors/DNA-binding proteins with DNA. We have modified the traditional radiolabeled DNA gel mobility shift assay to incorporate a DNA probe end-labeled with a Texas-red fluorophore and a DNA-binding protein tagged with the green fluorescent protein to monitor precisely DNA-protein complexation by native gel electrophoresis. We have applied this method to the DNA-binding proteins telomere release factor-1 and the sex-determining region-Y, demonstrating that the method is sensitive (able to detect 100 fmol of fluorescently labeled DNA), permits direct visualization of both the DNA probe and the DNA-binding protein, and enables quantitative analysis of DNA and protein complexation, and thereby an estimation of the stoichiometry of protein-DNA binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteins are transported into and out of the cell nucleus via specific signals. The two best-studied nuclear transport processes are mediated either by classical nuclear localization signals or nuclear export signals. There also are shuttling sequences that direct the bidirectional transport of RNA-binding proteins. Two examples are the M9 sequence in heterogeneous nuclear ribonucleoprotein A1 and the heterogeneous nuclear ribonucleoprotein K shuttling domain (KNS) sequence in heterogeneous nuclear ribonucleoprotein K, both of which appear to contribute importantly to the export of mRNA to the cytoplasm. HuR is an RNA-binding protein that can stabilize labile mRNAs containing AU-rich elements in their 3′ untranslated regions and has been shown to shuttle between the nucleus and cytoplasm (18, 19). We have identified in HuR a shuttling sequence that also possess transcription-dependent nuclear localization signal activity. We propose that HuR first may bind AU-rich element-containing mRNAs in the nucleus and then escort them through the nuclear pore, providing protection during and after export to the cytoplasmic compartment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SF3b155 is an essential spliceosomal protein, highly conserved during evolution. It has been identified as a subunit of splicing factor SF3b, which, together with a second multimeric complex termed SF3a, interacts specifically with the 12S U2 snRNP and converts it into the active 17S form. The protein displays a characteristic intranuclear localization. It is diffusely distributed in the nucleoplasm but highly concentrated in defined intranuclear structures termed “speckles,” a subnuclear compartment enriched in small ribonucleoprotein particles and various splicing factors. The primary sequence of SF3b155 suggests a multidomain structure, different from those of other nuclear speckles components. To identify which part of SF3b155 determines its specific intranuclear localization, we have constructed expression vectors encoding a series of epitope-tagged SF3b155 deletion mutants as well as chimeric combinations of SF3b155 sequences with the soluble cytoplasmic protein pyruvate kinase. Following transfection of cultured mammalian cells, we have identified (i) a functional nuclear localization signal of the monopartite type (KRKRR, amino acids 196–200) and (ii) a molecular segment with multiple threonine-proline repeats (amino acids 208–513), which is essential and sufficient to confer a specific accumulation in nuclear speckles. This latter sequence element, in particular amino acids 208–440, is required for correct subcellular localization of SF3b155 and is also sufficient to target a reporter protein to nuclear speckles. Moreover, this “speckle-targeting sequence” transfers the capacity for interaction with other U2 snRNP components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have identified an amino acid sequence in the Drosophila Transformer (Tra) protein that is capable of directing a heterologous protein to nuclear speckles, regions of the nucleus previously shown to contain high concentrations of spliceosomal small nuclear RNAs and splicing factors. This sequence contains a nucleoplasmin-like bipartite nuclear localization signal (NLS) and a repeating arginine/serine (RS) dipeptide sequence adjacent to a short stretch of basic amino acids. Sequence comparisons from a number of other splicing factors that colocalize to nuclear speckles reveal the presence of one or more copies of this motif. We propose a two-step subnuclear localization mechanism for splicing factors. The first step is transport across the nuclear envelope via the nucleoplasmin-like NLS, while the second step is association with components in the speckled domain via the RS dipeptide sequence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystals of recombinant importin alpha, the nuclear-import receptor, have been obtained at two different pH conditions by vapour diffusion using sodium citrate as precipitant and dithiothreitol as an additive. At pH 4-5, the crystals have the symmetry of the trigonal space group P3(1)21 or P3(2)21 (a = b = 78.0, c = 255.8 Angstrom, gamma = 120 degrees); at pH 6-7, the crystals have the symmetry of the orthorhombic space group P2(1)2(1)2(1) (a = 78.5, b = 89.7, c = 100.5 Angstrom). In both cases, there is probably one molecule of importin ct in the asymmetric unit. At least one of the crystal forms diffracts to a resolution higher than 3 Angstrom using the laboratory X-ray source; the crystals are suitable for crystal structure determination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteins containing the classical nuclear localization sequences (NLSs) are imported into the nucleus by the importin-alpha/beta heterodimer. Importin-alpha contains the NLS binding site, whereas importin-beta mediates the translocation through the nuclear pore. We characterized the interactions involving importin-alpha during nuclear import using a combination of biophysical techniques (biosensor, crystallography, sedimentation equilibrium, electrophoresis, and circular dichroism). Importin-alpha is shown to exist in a monomeric autoinhibited state (association with NLSs undetectable by biosensor). Association with importin-beta (stoichiometry, 1:1; K-D = 1.1 x 10(-8) m) increases the affinity for NLSs; the importin-alpha/beta complex binds representative monopartite NLS (simian virus 40 large T-antigen) and bipartite NLS (nucleoplasmin) with affinities (K-D = 3.5 x 10(-8) m and 4.8 x 10(-8) m, respectively) comparable with those of a truncated importin-alpha lacking the autoinhibitory domain (T-antigen NLS, K-D = 1.7 x 10(-8) m; nucleoplasmin NLS, K-D = 1.4 x 10(-8) m). The autoinhibitory domain (as a separate peptide) binds the truncated importin-alpha, and the crystal structure of the complex resembles the structure of full-length importin-alpha. Our results support the model of regulation of nuclear import mediated by the intrasteric autoregulatory sequence of importin-alpha and provide a quantitative description of the binding and regulatory steps during nuclear import.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phytochrome (phy) family of photoreceptors is of crucial importance throughout the life cycle of higher plants. Light-induced nuclear import is required for most phytochrome responses. Nuclear accumulation of phyA is dependent on two related proteins called FHY1 (Far-red elongated HYpocotyl 1) and FHL (FHY1 Like), with FHY1 playing the predominant function. The transcription of FHY1 and FHL are controlled by FHY3 (Far-red elongated HYpocotyl 3) and FAR1 (FAr-red impaired Response 1), a related pair of transcription factors, which thus indirectly control phyA nuclear accumulation. FHY1 and FHL preferentially interact with the light-activated form of phyA, but the mechanism by which they enable photoreceptor accumulation in the nucleus remains unsolved. Sequence comparison of numerous FHY1-related proteins indicates that only the NLS located at the N-terminus and the phyA-interaction domain located at the C-terminus are conserved. We demonstrate that these two parts of FHY1 are sufficient for FHY1 function. phyA nuclear accumulation is inhibited in the presence of high levels of FHY1 variants unable to enter the nucleus. Furthermore, nuclear accumulation of phyA becomes light- and FHY1-independent when an NLS sequence is fused to phyA, strongly suggesting that FHY1 mediates nuclear import of light-activated phyA. In accordance with this idea, FHY1 and FHY3 become functionally dispensable in seedlings expressing a constitutively nuclear version of phyA. Our data suggest that the mechanism uncovered in Arabidopsis is conserved in higher plants. Moreover, this mechanism allows us to propose a model explaining why phyA needs a specific nuclear import pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design and synthesis of Lamellarin D conjugates with a nuclear localization signal peptide and a poly(ethylene glycol)-based dendrimer are described. Conjugates 1-4 were obtained in 8-84% overall yields from the corresponding protected Lamellarin D. Conjugates 1 and 4 are 1.4 to 3.3-fold more cytotoxic than the parent compound against three human tumor cell lines(MDA-MB-231 breast, A-549 lung, and HT-29 colon). Besides, conjugates 3, 4 showed a decrease in activity potency in BJ skin fibroblasts, a normal cell culture. Cellular internalization was analyzed and nuclear distribution pattern was observed for 4, which contains a nuclear localization signalling sequence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Affiliation: Zhujun Ao, Éric Cohen & Xiaojian Yao : Département de microbiologie et immunologie, Faculté de Médecine, Université de Montréal