939 resultados para non-metallic material


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The soda process was the first chemical pulping method and was patented in 1845. Soda pulping led to kraft pulping, which involves the combined use of sodium hydroxide and sodium sulfide. Today, kraft pulping dominates the chemical pulping industry. However, about 10% of the total chemical pulp produced in the world is made using non-wood material, such as bagasse and wheat straw. The soda process is the preferred method of chemical pulping of non-wood materials, because it is considered to be economically viable on a small scale and for bagasse is compatible with sugarcane processing. With recent developments, the soda process can be designed to produce minimal effluent discharge and the fouling of evaporators by silica precipitation. The aim of this work is to produce bagasse fibres suitable for papermaking and allied applications and to produce sulfur-free lignin for use in specialty applications. A preliminary economic analysis of the soda process for producing commodity silica, lignin and pulp for papermaking is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

All relevant international standards for determining if a metallic rod is flammable in oxygen utilize some form of “promoted ignition” test. In this test, for a given pressure, an overwhelming ignition source is coupled to the end of the test sample and the designation flammable or nonflammable is based upon the amount burned, that is, a burn criteria. It is documented that (1) the initial temperature of the test sample affects the burning of the test sample both (a) in regards to the pressure at which the sample will support burning (threshold pressure) and (b) the rate at which the sample is melted (regression rate of the melting interface); and, (2) the igniter used affects the test sample by heating it adjacent to the igniter as ignition occurs. Together, these facts make it necessary to ensure, if a metallic material is to be considered flammable at the conditions tested, that the burn criteria will exclude any region of the test sample that may have undergone preheating during the ignition process. A two-dimensional theoretical model was developed to describe the transient heat transfer occurring and resultant temperatures produced within this system. Several metals (copper, aluminum, iron, and stainless steel) and ignition promoters (magnesium, aluminum, and Pyrofuze®) were evaluated for a range of oxygen pressures between 0.69 MPa (100 psia) and 34.5 MPa (5,000 psia). A MATLAB® program was utilized to solve the developed model that was validated against (1) a published solution for a similar system and (2) against experimental data obtained during actual tests at the National Aeronautics and Space Administration White Sands Test Facility. The validated model successfully predicts temperatures within the test samples with agreement between model and experiment increasing as test pressure increases and/or distance from the promoter increases. Oxygen pressure and test sample thermal diffusivity were shown to have the largest effect on the results. In all cases evaluated, there is no significant preheating (above about 38°C/100°F) occurring at distances greater than 30 mm (1.18 in.) during the time the ignition source is attached to the test sample. This validates a distance of 30 mm (1.18 in.) above the ignition promoter as a burn length upon which a definition of flammable can be based for inclusion in relevant international standards (that is, burning past this length will always be independent of the ignition event for the ignition promoters considered here. KEYWORDS: promoted ignition, metal combustion, heat conduction, thin fin, promoted combustion, burn length, burn criteria, flammability, igniter effects, heat affected zone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the findings of an investigation into the rate-limiting mechanism for the heterogeneous burning in oxygen under normal gravity and microgravity of cylindrical iron rods. The original objective of the work was to determine why the observed melting rate for burning 3.2-mm diameter iron rods is significantly higher in microgravity than in normal gravity. This work, however, also provided fundamental insight into the rate-limiting mechanism for heterogeneous burning. The paper includes a summary of normal-gravity and microgravity experimental results, heat transfer analysis and post-test microanalysis of quenched samples. These results are then used to show that heat transfer across the solid/liquid interface is the rate-limiting mechanism for melting and burning, limited by the interfacial surface area between the molten drop and solid rod. In normal gravity, the work improves the understanding of trends reported during standard flammability testing for metallic materials, such as variations in melting rates between test specimens with the same cross-sectional area but different crosssectional shape. The work also provides insight into the effects of configuration and orientation, leading to an improved application of standard test results in the design of oxygen system components. For microgravity applications, the work enables the development of improved methods for lower cost metallic material flammability testing programs. In these ways, the work provides fundamental insight into the heterogeneous burning process and contributes to improved fire safety for oxygen systems in applications involving both normal-gravity and microgravity environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnetic Resonance Imaging (MRI) offers a valuable research tool for the assessment of 3D spinal deformity in AIS, however the horizontal patient position imposed by conventional scanners removes the axial compressive loading on the spine which is an important determinant of deformity shape and magnitude in standing scoliosis patients. The objective of this study was to design, construct and test an MRI compatible compression device for research into the effect of axial loading on spinal deformity using supine MRI scans. The compression device was designed and constructed, consisting of a vest worn by the patient, which was attached via straps to a pneumatically actuated footplate. An applied load of 0.5 x bodyweight was remotely controlled by a unit in the scanner operator’s console. The entire device was constructed using non-metallic components for MRI compatibility. The device was evaluated by performing unloaded and loaded supine MRI scans on a series of 10 AIS patients. The study concluded that an MRI compatible compression device had been successfully designed and constructed, providing a research tool for studies into the effect of axial loading on 3D spinal deformity in scoliosis. The 3D axially loaded MR imaging capability developed in this study will allow future research investigations of the effect of axial loading on spinal rotation, and for imaging the response of scoliotic spinal tissues to axial loading.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Controlled syntheses of carbon nanotubes (CNTs) are highly desirable for nanoelectronic applications. To date, metallic catalyst particles have usually been deemed unavoidable for the nucleation and growth of any kind of CNTs. However, the presence of metal species mixed with the CNTs represents a shortcoming for most electronic applications, as metal particles are incompatible with silicon semiconductor technology. Recently it has been shown that it is possible to create nanotubes without the presence of metallic catalysts, by using SIO2, Ge and other non-metallic nanoparticles. Here we report on a metal-catalyst-free synthesis of CNTs, obtained through Ge nano-particles assembled on silicon surfaces previously patterned by Focused Ion Beam and nanoindentation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tensile and fatigue properties of as-rolled and annealed polycrystalline Cu foils with different thicknesses at the micrometer scale were investigated. Uniaxial tensile testing results showed that with decreasing foil thickness the uniform elongation decreases for both as-rolled and annealed foils, whereas the yield strength and ultimate tensile strength increase for as-rolled foils, but decrease for the annealed foils. For both the as-rolled or annealed foils, bending fatigue resistance decreases with decreasing the foil thickness. Deformation and fatigue damage behaviour of the free-standing foils were characterised as a function of foil thickness. In addition, the fatigue strength of various small-scale Cu foils was compared to understand they physical mechanisms of size effects on mechanical properties of the metallic material at micrometer scales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Different archives of television material construct different versions of Australian national identity. There exists a Pro-Am archive of Australian television history materials consisting of many individual collections. This archive is not centrally located nor clearly bounded. The collections are not all linked to each other, nor are they aware of each other, and they do not claim to have a single common project. Pro-Am collections tend not to address Australian television as a whole, rather addressing particular genres, programs or production companies. Their vision of Australia is 'ordinary' and everyday. The boundaries of 'Australia' in the Pro-Am archive are porous, allowing non-Australians to contribute material, and also including non-Australian material and this causes little sense of anxiety.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Proper functioning of Insulated Rail Joints (IRJs) is essential for the safe operation of the railway signalling systems and broken rail identification circuitries. The Conventional IRJ (CIRJ) resembles structural butt joints consisting of two pieces of rails connected together through two joint bars on either side of their web and the assembly is held together through pre-tensioned bolts. As the IRJs should maintain electrical insulation between the two rails, a gap between the rail ends must be retained at all times and all metal contacting surfaces should be electrically isolated from each other using non-conductive material. At the gap, the rail ends lose longitudinal continuity and hence the vertical sections of the rail ends are often severely damaged, especially at the railhead, due to the passage of wheels compared to other continuously welded rail sections. Fundamentally, the reason for the severe damage can be related to the singularities of the wheel-rail contact pressure and the railhead stress. No new generation designs that have emerged in the market to date have focussed on this fundamental; they only have provided attention to either the higher strength materials or the thickness of the sections of various components of the IRJs. In this thesis a novel method of shape optimisation of the railhead is developed to eliminate the pressure and stress singularities through changes to the original sharp corner shaped railhead into an arc profile in the longitudinal direction. The optimal shape of the longitudinal railhead profile has been determined using three nongradient methods in search of accuracy and efficiency: (1) Grid Search Method; (2) Genetic Algorithm Method and (3) Hybrid Genetic Algorithm Method. All these methods have been coupled with a parametric finite element formulation for the evaluation of the objective function for each iteration or generation depending on the search algorithm employed. The optimal shape derived from these optimisation methods is termed as Stress Minimised Railhead (SMRH) in this thesis. This optimal SMRH design has exhibited significantly reduced stress concentration that remains well below the yield strength of the head hardened rail steels and has shifted the stress concentration location away from the critical zone of the railhead end. The reduction in the magnitude and the relocation of the stress concentration in the SMRH design has been validated through a full scale wheel – railhead interaction test rig; Railhead strains under the loaded wheels have been recorded using a non-contact digital image correlation method. Experimental study has confirmed the accuracy of the numerical predications. Although the SMRH shaped IRJs eliminate stress singularities, they can still fail due to joint bar or bolt hole cracking; therefore, another conceptual design, termed as Embedded IRJ (EIRJ) in this thesis, with no joint bars and pre-tensioned bolts has been developed using a multi-objective optimisation formulation based on the coupled genetic algorithm – parametric finite element method. To achieve the required structural stiffness for the safe passage of the loaded wheels, the rails were embedded into the concrete of the post tensioned sleepers; the optimal solutions for the design of the EIRJ is shown to simplify the design through the elimination of the complex interactions and failure modes of the various structural components of the CIRJ. The practical applicability of the optimal shapes SMRH and EIRJ is demonstrated through two illustrative examples, termed as improved designs (IMD1 & IMD2) in this thesis; IMD1 is a combination of the CIRJ and the SMRH designs, whilst IMD2 is a combination of the EIRJ and SMRH designs. These two improved designs have been simulated for two key operating (speed and wagon load) and design (wheel diameter) parameters that affect the wheel-rail contact; the effect of these parameters has been found to be negligible to the performance of the two improved designs and the improved designs are in turn found far superior to the current designs of the CIRJs in terms of stress singularities and deformation under the passage of the loaded wheels. Therefore, these improved designs are expected to provide longer service life in relation to the CIRJs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Motivation Awareness is an integral part of remote collaborative work and has been an important theme within the CSCW research. Our project aims at understanding and mediating non-verbal cues between remote participants involved in a design project. Research approach Within the AMIDA project we focus on distributed 'cooperative design' teams. We especially focus on the 'material' signals - signals in which people communicate through material artefacts, locations and their embodied actions. We apply an ethnographic approach to understand the role of physical artefacts in co-located naturalistic design setting. Based on the results we will generate important implications to support remote design work. We plan to develop a mixed-reality interface supported by a shared awareness display. This awareness display will provide information about the activities happening in the design room to remotely located participants. Findings/Design Our preliminary investigation with real-world design teams suggests that both the materiality of designers' work settings and their social practices play an important role in understanding these material signals that are at play. Originality/Value Most research supporting computer mediated communication have focused on either face-to-face or linguistically oriented communication paradigms. Our research focuses on mediating the non-verbal, material cues for supporting collaborative activities without impoverishing what designers do in their day to day working lives. Take away message An ethnographic approach allows us to understand the naturalistic practices of design teams, which can lead to designing effective technologies to support group work. In that respect, the findings of our research will have a generic value beyond the application domain chosen (design teams).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Simple, rapid, catalyst-free synthesis of complex patterns of long, vertically aligned multiwalled carbon nanotubes, strictly confined within mechanically-written features on a Si(1 0 0) surface is reported. It is shown that dense arrays of the nanotubes can nucleate and fully fill the features when the low-temperature microwave plasma is in a direct contact with the surface. This eliminates additional nanofabrication steps and inevitable contact losses in applications associated with carbon nanotube patterns. Using metal catalyst has long been considered essential for the nucleation and growth of surface-supported carbon nanotubes (CNTs) [1] and [2]. Only very recently, the possibility of CNT growth using non-metallic (e.g., oxide [3] and SiC [4]) catalysts or artificially created carbon-enriched surface layers [5] has been demonstrated. However, successful integration of carbon nanostructures into Si-based nanodevice platforms requires catalyst-free growth, as the catalyst nanoparticles introduce contact losses, and their catalytic activity is very difficult to control during the growth [6]. Furthermore, in many applications in microfluidics, biological and molecular filters, electronic, sensor, and energy conversion nanodevices, the CNTs need to be arranged in specific complex patterns [7] and [8]. These patterns need to contain the basic features (e.g., lines and dots) written using simple procedures and fully filled with dense arrays of high-quality, straight, yet separated nanotubes. In this paper, we report on a completely metal or oxide catalyst-free plasma-based approach for the direct and rapid growth of dense arrays of long vertically-aligned multi-walled carbon nanotubes arranged into complex patterns made of various combinations of basic features on a Si(1 0 0) surface written using simple mechanical techniques. The process was conducted in a plasma environment [9] and [10] produced by a microwave discharge which typically generates the low-temperature plasmas at the discharge power below 1 kW [11]. Our process starts from mechanical writing (scribing) a pattern of arbitrary features on pre-treated Si(1 0 0) wafers. Before and after the mechanical feature writing, the Si(1 0 0) substrates were cleaned in an aqueous solution of hydrofluoric acid for 2 min to remove any possible contaminations (such as oil traces which could decompose to free carbon at elevated temperatures) from the substrate surface. A piece of another silicon wafer cleaned in the same way as the substrate, or a diamond scriber were used to produce the growth patterns by a simple arbitrary mechanical writing, i.e., by making linear scratches or dot punctures on the Si wafer surface. The results were the same in both cases, i.e., when scratching the surface by Si or a diamond scriber. The procedure for preparation of the substrates did not involve any possibility of external metallic contaminations on the substrate surface. After the preparation, the substrates were loaded into an ASTeX model 5200 chemical vapour deposition (CVD) reactor, which was very carefully conditioned to remove any residue contamination. The samples were heated to at least 800 °C to remove any oxide that could have formed during the sample loading [12]. After loading the substrates into the reactor chamber, N2 gas was supplied into the chamber at the pressure of 7 Torr to ignite and sustain the discharge at the total power of 200 W. Then, a mixture of CH4 and 60% of N2 gases were supplied at 20 Torr, and the discharge power was increased to 700 W (power density of approximately 1.49 W/cm3). During the process, the microwave plasma was in a direct contact with the substrate. During the plasma exposure, no external heating source was used, and the substrate temperature (∼850 °C) was maintained merely due to the plasma heating. The features were exposed to a microwave plasma for 3–5 min. A photograph of the reactor and the plasma discharge is shown in Fig. 1a and b.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent times, blended polymers have shown a lot of promise in terms of easy processability in different shapes and forms. In the present work, polyaniline emeraldine base (PANi-EB) was doped with camphor sulfonic acid (CSA) and combined with the conducting polymer polyfluorene (PF) as well as the insulating polymer polyvinyl chloride (PVC) to synthesize CSA doped PANi-PF and PANi-PVC blended polymers. It is well known that PANi when doped with CSA becomes highly conducting. However, its poor mechanical properties, such as low tensile, compressive, and flexural strength render PANi a non-ideal material to be processed for its various practical applications, such as electromagnetic shielding, anti-corrosion shielding, photolithography and microelectronic devices etc. Thus the search for polymers which are easily processable and are capable of showing high conductivity still continues. PANi-PVC blend was prepared, which showed low conductivity which is limiting factor for certain applications. Therefore, another processable polymer PF was chosen as conducting matrix. Conducting PF can be easily processed into various shapes and forms. Therefore, a blend mixture was prepared by using PANi and PF through the use of CSA as a counter ion which forms a "bridge" between the two polymeric components of the inter-polymer complex. Two blended polymers have been synthesized and investigated for their conductivity behaviour. It was observed that the blended film of CSA doped PANi-PVC showed a room temperature electrical conductivity of 2.8 × 10-7 S/cm where as the blended film made by CSA doped PANi with conducting polymer PF showed a room temperature conductivity of 1.3 × 10-5 S/cm. Blended films were irradiated with 100 MeV silicon ions with a view to increase their conductivity with a fluence ranging from 1011 ions to 1013 per cm2 from 15 UD Pelletron accelerator at NSC, New Delhi.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study analyzed the relationship between the CO2 emissions of different industries and economic growth in OECD countries from 1970 to 2005. We tested an environmental Kuznets curve (EKC) hypothesis and found that total CO2 emissions from nine industries show an N-shaped trend instead of an inverted U or monotonic increasing trend with increasing income. The EKC hypothesis for sector-level CO2 emissions was supported in the (1) paper, pulp, and printing industry; (2) wood and wood products industry; and (3) construction industry. We also found that emissions from coal and oil increase with economic growth in the steel and construction industries. In addition, the non-metallic minerals, machinery, and transport equipment industries tend to have increased emissions from oil and electricity with economic growth. Finally, the EKC turning point and the relationship between GDP per capita and sectoral CO2 emissions differ among industries according to the fuel type used. Therefore, environmental policies for CO2 reduction must consider these differences in industrial characteristics. © 2013 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electroslag refining is a useful remelting process by which clean steels can be produced for sophisticated applications. In this investigation, AISI 4340 steel has been electroslag refined and the improvement in its hot ductility has been assessed using hot torsion tests; electroslag refining has improved the hot ductility considerably. The temperature at which peak ductility is obtained has also increased — from 1473 K in the unrefined steel to 1573 K in ESR steel. Results indicate that it should be possible to subject the ESR ingot to much higher strains per unit operation during industrial hot working processes such as forging, which would result in a considerable saving of power. The improvement in hot ductility in ESR steel has been attributed primarily to the removal of non-metallic inclusions and the reduction in sulphur content. From the apparent activation energy estimated from the hot torsion data, the dynamic recrystallization process is identified as the mechanism controlling the rate of hot deformation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Data on free convection heat transfer to water and mercury are collected using a test rig in vertical annuli of three radii ratios, the walls of which are maintained at uniform temperatures. A theoretical analysis of the boundary layer equations has been attempted using local similarity transformation and double boundary layer approach. Correlations derived from the present theoretical analysis are compared with the analysis and the experimental data available in literature for non-metallic fluids and also with the present experimental data on water and mercury. Generalised correlations are set up for expressing the ratio of heat transferred by convection to the heat transferred by pure conduction and Nusselt's number, in terms of Grashof, Rayleigh and Prandtl numbers, based on the theoretical analysis and the present data on mercury and water. The present generalised correlations agree with the reported and present data for non-metallic fluids and liquid metals with an average deviation of 9% and maximum deviation of ± 13.7%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atmospheric aerosol particles affect the global climate as well as human health. In this thesis, formation of nanometer sized atmospheric aerosol particles and their subsequent growth was observed to occur all around the world. Typical formation rate of 3 nm particles at varied from 0.01 to 10 cm-3s-1. One order of magnitude higher formation rates were detected in urban environment. Highest formation rates up to 105 cm-3s-1 were detected in coastal areas and in industrial pollution plumes. Subsequent growth rates varied from 0.01 to 20 nm h-1. Smallest growth rates were observed in polar areas and the largest in the polluted urban environment. This was probably due to competition between growth by condensation and loss by coagulation. Observed growth rates were used in the calculation of a proxy condensable vapour concentration and its source rate in vastly different environments from pristine Antarctica to polluted India. Estimated concentrations varied only 2 orders of magnitude, but the source rates for the vapours varied up to 4 orders of magnitude. Highest source rates were in New Delhi and lowest were in the Antarctica. Indirect methods were applied to study the growth of freshly formed particles in the atmosphere. Also a newly developed Water Condensation Particle Counter, TSI 3785, was found to be a potential candidate to detect water solubility and thus indirectly composition of atmospheric ultra-fine particles. Based on indirect methods, the relative roles of sulphuric acid, non-volatile material and coagulation were investigated in rural Melpitz, Germany. Condensation of non-volatile material explained 20-40% and sulphuric acid the most of the remaining growth up to a point, when nucleation mode reached 10 to 20 nm in diameter. Coagulation contributed typically less than 5%. Furthermore, hygroscopicity measurements were applied to detect the contribution of water soluble and insoluble components in Athens. During more polluted days, the water soluble components contributed more to the growth. During less anthropogenic influence, non-soluble compounds explained a larger fraction of the growth. In addition, long range transport to a measurement station in Finland in a relatively polluted air mass was found to affect the hygroscopicity of the particles. This aging could have implications to cloud formation far away from the pollution sources.