978 resultados para non-coding RNAs (ncRNAs)
Resumo:
The mammalian transcriptome contains many nonprotein-coding RNAs (ncRNAs), but most of these are of unclear significance and lack strong sequence conservation, prompting suggestions that they might be non-functional. However, certain long functional ncRNAs such as Air and Xist are also poorly conserved. In this article, we systematically analyzed the conservation of several groups of functional ncRNAs, including miRNAs, snoRNAs and longer ncRNAs whose function has been either documented or confidently predicted. As expected, miRNAs and snoRNAs were highly conserved. By contrast, the longer functional non-micro, non-sno ncRNAs were much less conserved with many displaying rapid sequence evolution. Our findings suggest that longer ncRNAs are under the influence of different evolutionary constraints and that the lack of conservation displayed by the thousands of candidate ncRNAs does not necessarily signify an absence of function.
Resumo:
Non- protein- coding RNAs ( ncRNAs) are increasingly being recognized as having important regulatory roles. Although much recent attention has focused on tiny 22- to 25- nucleotide microRNAs, several functional ncRNAs are orders of magnitude larger in size. Examples of such macro ncRNAs include Xist and Air, which in mouse are 18 and 108 kilobases ( Kb), respectively. We surveyed the 102,801 FANTOM3 mouse cDNA clones and found that Air and Xist were present not as single, full- length transcripts but as a cluster of multiple, shorter cDNAs, which were unspliced, had little coding potential, and were most likely primed from internal adenine- rich regions within longer parental transcripts. We therefore conducted a genome- wide search for regional clusters of such cDNAs to find novel macro ncRNA candidates. Sixty- six regions were identified, each of which mapped outside known protein- coding loci and which had a mean length of 92 Kb. We detected several known long ncRNAs within these regions, supporting the basic rationale of our approach. In silico analysis showed that many regions had evidence of imprinting and/ or antisense transcription. These regions were significantly associated with microRNAs and transcripts from the central nervous system. We selected eight novel regions for experimental validation by northern blot and RT- PCR and found that the majority represent previously unrecognized noncoding transcripts that are at least 10 Kb in size and predominantly localized in the nucleus. Taken together, the data not only identify multiple new ncRNAs but also suggest the existence of many more macro ncRNAs like Xist and Air.
Resumo:
The male hypermethylated (MHM) region, located near the middle of the short arm of the Z chromosome of chickens, consists of approximately 210 tandem repeats of a BamHI 2.2-kb sequence unit. Cytosines of the CpG dinucleotides of this region are extensively methylated on the two Z chromosomes in the male but much less methylated on the single Z chromosome in the female. The state of methylation of the MHM region is established after fertilization by about the 1-day embryonic stage. The MHM region is transcribed only in the female from the particular strand into heterogeneous, high molecular-mass, non-coding RNA, which is accumulated at the site of transcription, adjacent to the DMRT1 locus, in the nucleus. The transcriptional silence of the MHM region in the male is most likely caused by the CpG methylation, since treatment of the male embryonic fibroblasts with 5-azacytidine results in hypo-methylation and active transcription of this region. In ZZW triploid chickens, MHM regions are hypomethylated and transcribed on the two Z chromosomes, whereas MHM regions are hypermethylated and transcriptionally inactive on the three Z chromosomes in ZZZ triploid chickens, suggesting a possible role of the W chromosome on the state of the MHM region.
The Role of Small RNAs and Ribonucleases in the Control of Gene Expression in Salmonella Typhimurium
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
BACKGROUND: The comparison of complete genomes has revealed surprisingly large numbers of conserved non-protein-coding (CNC) DNA regions. However, the biological function of CNC remains elusive. CNC differ in two aspects from conserved protein-coding regions. They are not conserved across phylum boundaries, and they do not contain readily detectable sub-domains. Here we characterize the persistence length and time of CNC and conserved protein-coding regions in the vertebrate and insect lineages. RESULTS: The persistence length is the length of a genome region over which a certain level of sequence identity is consistently maintained. The persistence time is the evolutionary period during which a conserved region evolves under the same selective constraints.Our main findings are: (i) Insect genomes contain 1.60 times less conserved information than vertebrates; (ii) Vertebrate CNC have a higher persistence length than conserved coding regions or insect CNC; (iii) CNC have shorter persistence times as compared to conserved coding regions in both lineages. CONCLUSION: Higher persistence length of vertebrate CNC indicates that the conserved information in vertebrates and insects is organized in functional elements of different lengths. These findings might be related to the higher morphological complexity of vertebrates and give clues about the structure of active CNC elements.Shorter persistence time might explain the previously puzzling observations of highly conserved CNC within each phylum, and of a lack of conservation between phyla. It suggests that CNC divergence might be a key factor in vertebrate evolution. Further evolutionary studies will help to relate individual CNC to specific developmental processes.
Resumo:
Small nucleolar RNAs (snoRNAs) are small non-coding RNAs that modify RNA molecules such as rRNA and snRNA by guiding 2'-O-ribose methylation (C/D box snoRNA family) and pseudouridylation reactions (H/ACA snoRNA family). H/ACA snoRNAs are also involved in trans-splicing in trypanosomatids. The aims of this work were to characterise the Cl gene cluster that encodes several snoRNAs in Trypanosoma rangeli and compare it with clusters from Trypanosoma cruzi, Trypanosoma brucei, Leishmania major, Leishmania infantum, Leishmania braziliensis and Leptomonas collosoma. The T. rangeli Cl gene cluster is an 801 base pair (bp) repeat sequence that encodes three C/D (Cl1, Cl2 and Cl4) and three H/ACA (Cl3, Cl5 and Cl6) snoRNAs. In contrast to T. brucei, the Cl3 and Cl5 homologues have not been annotated in the Leishmania or T. cruzi genome projects (http//:www.genedb.org). Of note, snoRNA transcribed regions have a high degree of sequence identity among all species and share gene synteny. Collectively, these findings suggest that the Cl cluster could constitute an interesting target for therapeutic (gene silencing) or diagnostic intervention strategies (PCR-derived tools).
Resumo:
The opportunistic pathogen Pseudomonas aeruginosa PAO1 has a remarkable capacity to adapt to various environments and to survive with limited nutrients. Here, we report the discovery and characterization of a novel small non-coding RNA: NrsZ (nitrogen-regulated sRNA). We show that under nitrogen limitation, NrsZ is induced by the NtrB/C two component system, an important regulator of nitrogen assimilation and P. aeruginosa's swarming motility, in concert with the alternative sigma factor RpoN. Furthermore, we demonstrate that NrsZ modulates P. aeruginosa motility by controlling the production of rhamnolipid surfactants, virulence factors notably needed for swarming motility. This regulation takes place through the post-transcriptional control of rhlA, a gene essential for rhamnolipids synthesis. Interestingly, we also observed that NrsZ is processed in three similar short modules, and that the first short module encompassing the first 60 nucleotides is sufficient for NrsZ regulatory functions.
Resumo:
BACKGROUND: Conserved non-coding sequences in the human genome are approximately tenfold more abundant than known genes, and have been hypothesized to mark the locations of cis-regulatory elements. However, the global contribution of conserved non-coding sequences to the transcriptional regulation of human genes is currently unknown. Deeply conserved elements shared between humans and teleost fish predominantly flank genes active during morphogenesis and are enriched for positive transcriptional regulatory elements. However, such deeply conserved elements account for <1% of the conserved non-coding sequences in the human genome, which are predominantly mammalian. RESULTS: We explored the regulatory potential of a large sample of these 'common' conserved non-coding sequences using a variety of classic assays, including chromatin remodeling, and enhancer/repressor and promoter activity. When tested across diverse human model cell types, we find that the fraction of experimentally active conserved non-coding sequences within any given cell type is low (approximately 5%), and that this proportion increases only modestly when considered collectively across cell types. CONCLUSIONS: The results suggest that classic assays of cis-regulatory potential are unlikely to expose the functional potential of the substantial majority of mammalian conserved non-coding sequences in the human genome.
Resumo:
Gene expression changes may underlie much of phenotypic evolution. The development of high-throughput RNA sequencing protocols has opened the door to unprecedented large-scale and cross-species transcriptome comparisons by allowing accurate and sensitive assessments of transcript sequences and expression levels. Here, we review the initial wave of the new generation of comparative transcriptomic studies in mammals and vertebrate outgroup species in the context of earlier work. Together with various large-scale genomic and epigenomic data, these studies have unveiled commonalities and differences in the dynamics of gene expression evolution for various types of coding and non-coding genes across mammalian lineages, organs, developmental stages, chromosomes and sexes. They have also provided intriguing new clues to the regulatory basis and phenotypic implications of evolutionary gene expression changes.
Resumo:
INTRODUCTION: Intrauterine Growth Restriction (IUGR) is a multifactorial disease defined by an inability of the fetus to reach its growth potential. IUGR not only increases the risk of neonatal mortality/morbidity, but also the risk of metabolic syndrome during adulthood. Certain placental proteins have been shown to be implicated in IUGR development, such as proteins from the GH/IGF axis and angiogenesis/apoptosis processes. METHODS: Twelve patients with term IUGR pregnancy (birth weight < 10th percentile) and 12 CTRLs were included. mRNA was extracted from the fetal part of the placenta and submitted to a subtraction method (Clontech PCR-Select cDNA Subtraction). RESULTS: One candidate gene identified was the long non-coding RNA NEAT1 (nuclear paraspeckle assembly transcript 1). NEAT1 is the core component of a subnuclear structure called paraspeckle. This structure is responsible for the retention of hyperedited mRNAs in the nucleus. Overall, NEAT1 mRNA expression was 4.14 (±1.16)-fold increased in IUGR vs. CTRL placentas (P = 0.009). NEAT1 was exclusively localized in the nuclei of the villous trophoblasts and was expressed in more nuclei and with greater intensity in IUGR placentas than in CTRLs. PSPC1, one of the three main proteins of the paraspeckle, co-localized with NEAT1 in the villous trophoblasts. The expression of NEAT1_2 mRNA, the long isoform of NEAT1, was only modestly increased in IUGR vs. CTRL placentas. DISCUSSION/CONCLUSION: The increase in NEAT1 and its co-localization with PSPC1 suggests an increase in paraspeckles in IUGR villous trophoblasts. This could lead to an increased retention of important mRNAs in villous trophoblasts nuclei. Given that the villous trophoblasts are crucial for the barrier function of the placenta, this could in part explain placental dysfunction in idiopathic IUGR fetuses.
Resumo:
The human immunoglobulin lambda variable locus (IGLV) is mapped at chromosome 22 band q11.1-q11.2. The 30 functional germline v-lambda genes sequenced untill now have been subgrouped into 10 families (Vl1 to Vl10). The number of Vl genes has been estimated at approximately 70. This locus is formed by three gene clusters (VA, VB and VC) that encompass the variable coding genes (V) responsible for the synthesis of lambda-type Ig light chains, and the Jl-Cl cluster with the joining segments and the constant genes. Recently the entire variable lambda gene locus was mapped by contig methodology and its one- megabase DNA totally sequenced. All the known functional V-lambda genes and pseudogenes were located. We screened a human genomic DNA cosmid library and isolated a clone with an insert of 37 kb (cosmid 8.3) encompassing four functional genes (IGLV7S1, IGLV1S1, IGLV1S2 and IGLV5a), a pseudogene (VlA) and a vestigial sequence (vg1) to study in detail the positions of the restriction sites surrounding the Vl genes. We generated a high resolution restriction map, locating 31 restriction sites in 37 kb of the VB cluster, a region rich in functional Vl genes. This mapping information opens the perspective for further RFLP studies and sequencing
Resumo:
La régulation de l’homéostasie du fer est cruciale chez les bactéries. Chez Salmonella, l’expression des gènes d’acquisition et du métabolisme du fer au moment approprié est importante pour sa survie et sa virulence. Cette régulation est effectuée par la protéine Fur et les petits ARN non codants RfrA et RfrB. Le rôle de ces régulateurs est d’assurer que le niveau de fer soit assez élevé pour la survie et le métabolisme de Salmonella, et assez faible pour éviter l’effet toxique du fer en présence d’oxygène. Les connaissances concernant le rôle de ces régulateurs ont été principalement obtenues par des études chez S. Typhimurium, un sérovar généraliste causant une gastro-entérite chez les humains. Très peu d’informations sont connues sur le rôle de ces régulateurs chez S. Typhi, un sérovar humain-spécifique responsable de la fièvre typhoïde. Le but de cette étude était de déterminer les rôles de Fur, RfrA et RfrB dans l’homéostasie du fer et la virulence de Salmonella, et de démontrer qu’ils ont une implication distincte chez les sérovars Typhi et Typhimurium. Premièrement, Fur, RfrA et RfrB régulent l’homéostasie du fer de Salmonella. Les résultats de cette étude ont démontré que Fur est requis pour la résistance au stress oxydatif et pour une croissance optimale dans différentes conditions in vitro. La sensibilité du mutant fur est due à l’expression des petits ARN RfrA et RfrB, et cette sensibilité est beaucoup plus importante chez S. Typhi que chez S. Typhimurium. Également, Fur inhibe la transcription des gènes codant pour les sidérophores en conditions riches en fer, tandis que les petits ARN RfrA et RfrB semblent être importants pour la production d’entérobactine et de salmochélines chez S. Typhi lors de conditions pauvres en fer. Ensuite, ces régulateurs affectent la virulence de Salmonella. Fur est important pour la motilité de Salmonella, particulièrement chez S. Typhi. Fur est nécessaire pour l’invasion des deux sérovars dans les cellules épithéliales, et pour l’entrée et la survie de S. Typhi dans les macrophages. Chez S. Typhimurium, Fur ne semble pas impliqué dans l’interaction avec les macrophages. De plus, les petits ARN RfrA et RfrB sont importants pour la multiplication intracellulaire de Salmonella dans les macrophages pour les deux sérovars. Finalement, la protéine Fur et les petits ARN RfrA et RfrB régulent l’expression de l’opéron fimbriaire tcf, absent du génome de S. Typhimurium. Un site de liaison putatif de la protéine Fur a été identifié dans la région promotrice de tcfA chez S. Typhi, mais une régulation directe n’a pas été confirmée. L’expression de tcf est induite par le fer et par Fur, et est inhibée par les petits ARN RfrA et RfrB. Ainsi, ces régulateurs affectent des gènes de virulence qui sont retrouvés spécifiquement chez S. Typhi. En somme, ce projet a permis de démontrer que les régulateurs de l’homéostasie du fer de Salmonella peuvent affecter la résistance de cette bactérie pathogène à différents stress, notamment le stress oxydatif, la croissance en conditions de carence en fer ainsi que la virulence. Ces régulateurs jouent un rôle distinct chez les sérovars Typhi et Typhimurium.
Resumo:
HD (Huntington's disease) is a late onset heritable neurodegenerative disorder that is characterized by neuronal dysfunction and death, particularly in the cerebral cortex and medium spiny neurons of the striatum. This is followed by progressive chorea, dementia and emotional dysfunction, eventually resulting in death. HD is caused by an expanded CAG repeat in the first exon of the HD gene that results in an abnormally elongated polyQ (polyglutamine) tract in its protein product, Htt (Huntingtin). Wild-type Htt is largely cytoplasmic; however, in HD, proteolytic N-terminal fragments of Htt form insoluble deposits in both the cytoplasm and nucleus, provoking the idea that mutHtt (mutant Htt) causes transcriptional dysfunction. While a number of specific transcription factors and co-factors have been proposed as mediators of mutHtt toxicity, the causal relationship between these Htt/transcription factor interactions and HD pathology remains unknown. Previous work has highlighted REST [RE1 (repressor element 1)-silencing transcription factor] as one such transcription factor. REST is a master regulator of neuronal genes, repressing their expression. Many of its direct target genes are known or suspected to have a role in HD pathogenesis, including BDNF (brain-derived neurotrophic factor). Recent evidence has also shown that REST regulates transcription of regulatory miRNAs (microRNAs), many of which are known to regulate neuronal gene expression and are dysregulated in HD. Thus repression of miRNAs constitutes a second, indirect mechanism by which REST can alter the neuronal transcriptome in HD. We will describe the evidence that disruption to the REST regulon brought about by a loss of interaction between REST and mutHtt may be a key contributory factor in the widespread dysregulation of gene expression in HD.
Resumo:
Pós-graduação em Ciências Biológicas (Genética) - IBB