969 resultados para non-classical convolutions


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Non-classical properties and quantum interference (QI) in two-photon excitation of a three level atom (|1〉), |2〉, |3〉) in a ladder configuration, illuminated by multiple fields in non-classical (squeezed) and/or classical (coherent) states, is studied. Fundamentally new effects associated with quantum correlations in the squeezed fields and QI due to multiple excitation pathways have been observed. Theoretical studies and extrapolations of these findings have revealed possible applications which are far beyond any current capabilities, including ultrafast nonlinear mixing, ultrafast homodyne detection and frequency metrology. The atom used throughout the experiments was Cesium, which was magneto-optically trapped in a vapor cell to produce a Doppler-free sample. For the first part of the work the |1〉 → |2〉 → |3〉 transition (corresponding to the 6S1/2F = 4 → 6P3/2F' = 5 → 6D5/2F" = 6 transition) was excited by using the quantum-correlated signal (Ɛs) and idler (Ɛi) output fields of a subthreshold non-degenerate optical parametric oscillator, which was tuned so that the signal and idler fields were resonant with the |1〉 → |2〉 and |2〉 → |3〉 transitions, respectively. In contrast to excitation with classical fields for which the excitation rate as a function of intensity has always an exponent greater than or equal to two, excitation with squeezed-fields has been theoretically predicted to have an exponent that approaches unity for small enough intensities. This was verified experimentally by probing the exponent down to a slope of 1.3, demonstrating for the first time a purely non-classical effect associated with the interaction of squeezed fields and atoms. In the second part excitation of the two-photon transition by three phase coherent fields Ɛ1 , Ɛ2 and Ɛ0, resonant with the dipole |1〉 → |2〉 and |2〉 → |3〉 and quadrupole |1〉 → |3〉 transitions, respectively, is studied. QI in the excited state population is observed due to two alternative excitation pathways. This is equivalent to nonlinear mixing of the three excitation fields by the atom. Realizing that in the experiment the three fields are spaced in frequency over a range of 25 THz, and extending this scheme to other energy triplets and atoms, leads to the discovery that ranges up to 100's of THz can be bridged in a single mixing step. Motivated by these results, a master equation model has been developed for the system and its properties have been extensively studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied the response of a sol-gel based TiO(2), high k dielectric field effect transistor structure to microwave radiation. Under fixed bias conditions the transistor shows frequency dependent current fluctuations when exposed to continuous wave microwave radiation. Some of these fluctuations take the form of high Q resonances. The time dependent characteristics of these responses were studied by modulating the microwaves with a pulse signal. The measurements show that there is a shift in the centre frequency of these high Q resonances when the pulse time is varied. The measured lifetime of these resonances is high enough to be useful for non-classical information processing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

P>The non-classical major histocompatibility complex (MHC) class I molecule CD1d presents lipid antigens to invariant natural killer T (iNKT) cells, which are an important part of the innate immune system. CD1d/iNKT systems are highly conserved in evoluti

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trapped electrons, located close to the channel of a transistor, are promising as data storage elements in non-classical information processing. Cryogenic microwave spectroscopy has shown that these electrons give rise to high quality factor resonances in the drain current and a post excitation dynamic behaviour that is related to the system lifetime. Using a floating poly-silicon gate transistor, single shot spectroscopy is performed to characterise the dynamic behaviour during excitation. This behaviour is seen to be dominated by the decay of the transient component, which gives rise to oscillations around the high quality factor resonance. © 2012 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The behavior of trapped electrons, in a dielectric close to the channel of a silicon SOI-FET, is studied by cryogenic microwave spectroscopy. On-resonance microwave excitation causes one of these trapped electrons to undergo spatial Rabi oscillations between widely separated trap sites. This charge displacement causes a change in the drain current of the transistor, resulting in high quality factor resonances in continuous wave spectroscopy. The potential of this effect for non-classical information processing is investigated through polychromatic single-shot spectroscopy, using on-resonance and difference frequencies. Interaction between different trapped electrons is seen in the post excitation behavior and the possibilities of quantum gate operations are discussed. © The Electrochemical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A fundamental understanding of the information carrying capacity of optical channels requires the signal and physical channel to be modeled quantum mechanically. This thesis considers the problems of distributing multi-party quantum entanglement to distant users in a quantum communication system and determining the ability of quantum optical channels to reliably transmit information. A recent proposal for a quantum communication architecture that realizes long-distance, high-fidelity qubit teleportation is reviewed. Previous work on this communication architecture is extended in two primary ways. First, models are developed for assessing the effects of amplitude, phase, and frequency errors in the entanglement source of polarization-entangled photons, as well as fiber loss and imperfect polarization restoration, on the throughput and fidelity of the system. Second, an error model is derived for an extension of this communication architecture that allows for the production and storage of three-party entangled Greenberger-Horne-Zeilinger states. A performance analysis of the quantum communication architecture in qubit teleportation and quantum secret sharing communication protocols is presented. Recent work on determining the channel capacity of optical channels is extended in several ways. Classical capacity is derived for a class of Gaussian Bosonic channels representing the quantum version of classical colored Gaussian-noise channels. The proof is strongly mo- tivated by the standard technique of whitening Gaussian noise used in classical information theory. Minimum output entropy problems related to these channel capacity derivations are also studied. These single-user Bosonic capacity results are extended to a multi-user scenario by deriving capacity regions for single-mode and wideband coherent-state multiple access channels. An even larger capacity region is obtained when the transmitters use non- classical Gaussian states, and an outer bound on the ultimate capacity region is presented

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A model of laminar visual cortical dynamics proposes how 3D boundary and surface representations of slated and curved 3D objects and 2D images arise. The 3D boundary representations emerge from interactions between non-classical horizontal receptive field interactions with intracorticcal and intercortical feedback circuits. Such non-classical interactions contextually disambiguate classical receptive field responses to ambiguous visual cues using cells that are sensitive to angles and disparity gradients with cortical areas V1 and V2. These cells are all variants of bipole grouping cells. Model simulations show how horizontal connections can develop selectively to angles, how slanted surfaces can activate 3D boundary representations that are sensitive to angles and disparity gradients, how 3D filling-in occurs across slanted surfaces, how a 2D Necker cube image can be represented in 3D, and how bistable Necker cuber percepts occur. The model also explains data about slant aftereffects and 3D neon color spreading. It shows how habituative transmitters that help to control developement also help to trigger bistable 3D percepts and slant aftereffects, and how attention can influence which of these percepts is perceived by propogating along some object boundaries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Grouping of collinear boundary contours is a fundamental process during visual perception. Illusory contour completion vividly illustrates how stable perceptual boundaries interpolate between pairs of contour inducers, but do not extrapolate from a single inducer. Neural models have simulated how perceptual grouping occurs in laminar visual cortical circuits. These models predicted the existence of grouping cells that obey a bipole property whereby grouping can occur inwardly between pairs or greater numbers of similarly oriented and co-axial inducers, but not outwardly from individual inducers. These models have not, however, incorporated spiking dynamics. Perceptual grouping is a challenge for spiking cells because its properties of collinear facilitation and analog sensitivity to inducer configurations occur despite irregularities in spike timing across all the interacting cells. Other models have demonstrated spiking dynamics in laminar neocortical circuits, but not how perceptual grouping occurs. The current model begins to unify these two modeling streams by implementing a laminar cortical network of spiking cells whose intracellular temporal dynamics interact with recurrent intercellular spiking interactions to quantitatively simulate data from neurophysiological experiments about perceptual grouping, the structure of non-classical visual receptive fields, and gamma oscillations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis I present the work done during my PhD in the area of low dimensional quantum gases. The chapters of this thesis are self contained and represent individual projects which have been peer reviewed and accepted for publication in respected international journals. Various systems are considered, the first of which is a two particle model which possesses an exact analytical solution. I investigate the non-classical correlations that exist between the particles as a function of the tunable properties of the system. In the second work I consider the coherences and out of equilibrium dynamics of a one-dimensional Tonks-Girardeau gas. I show how the coherence of the gas can be inferred from various properties of the reduced state and how this may be observed in experiments. I then present a model which can be used to probe a one-dimensional Fermi gas by performing a measurement on an impurity which interacts with the gas. I show how this system can be used to observe the so-called orthogonality catastrophe using modern interferometry techniques. In the next chapter I present a simple scheme to create superposition states of particles with special emphasis on the NOON state. I explore the effect of inter-particle interactions in the process and then characterise the usefulness of these states for interferometry. Finally I present my contribution to a project on long distance entanglement generation in ion chains. I show how carefully tuning the environment can create decoherence-free subspaces which allows one to create and preserve entanglement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Disequilibrium between coagulation and fibrinolysis can lead to severe haemostatic disorders such as thrombosis and hemophilia. Thrombin-activable fibrinolysis inhibitor (TAFI) is a carboxypeptidase B-like pro-enzyme that, once activated, attenuates fibrinolysis. TAFI may also mediate connections between coagulation and inflammation. Studies have associated high plasma TAFI levels with risk for thrombotic diseases. Interestingly, steroid hormones, such as estrogen and progestogens used in hormone replacement therapy or oral contraceptive preparations, have been shown to affect plasma TAFI levels. Regulation of the expression of the gene encoding TAFI, CBP2, is likely an important determinant of the role of the TAFI pathway in vivo; this concept motivated the investigations described in this thesis. In Chapter 2, the results of my research lead to the identification of key transcription factors regulating CPB2. Specifically, we described the binding of NF-Y and HNF-1 to the CPB2 promoter. NF-Y was shown to be an important factor for the basal CPB2 promoter activity. Binding of HNF-1 is essential for the activity of the promoter and is potentially responsible for the liver specific expression of CPB2. In Chapter 3, we set to investigate the effect of female sex hormone on hepatic expression of CPB2. We demonstrated that the levels of TAFI protein secreted from cultured hepatoma cells (HepG2) are decreased by 17beta-estradiol and progesterone. The change in protein expression was paralleled by decreases in CPB2 mRNA abundance and promoter activity. Deletion analysis of the CPB2 promoter indicated that the genomic effects of estrogen and progesterone are likely mediated via a non-classical mechanism. In Chapter 4, we evaluated the effects of various inflammatory mediators on expression of the gene encoding mouse TAFI (Cpb2). Our results showed that Cpb2 mRNA abundance and promoter activity are up-regulated by inflammatory mediators IL-1beta, IL-6, and TNFalpha. We also showed that TNFalpha mediates its effect via the binding of NFkB. Additionally, our results suggest that TNFalpha promotes the binding of NFkB to the promoter by increasing its translocation to the nucleus. The NFkB site is not conserved between human and mouse and may explained the different responses to inflammation observed in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some non-classical properties such as squeezing, sub-Poissonian photon statistics or oscillations in photon-number distributions may survive longer in a phase-sensitive environment than in a phase-insensitive environment. We examine if entanglement, which is an inter-mode non-classical feature, can also survive longer in a phase-sensitive environment. Differently from the single-mode case, we find that making the environment phase-sensitive does not aid in prolonging the inter-mode non-classical nature, i.e. entanglement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose an optomechanical setup where the activation of entanglement through the pre-availability of non-classical correlations can be demonstrated experimentally. We analyse the conditions under which the scheme is successful and relate them to the current experimental state of the art. The successful activation of entanglement embodies an interesting alternative to current settings for the revelation of fully mechanical nonclassicality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Local computation in join trees or acyclic hypertrees has been shown to be linked to a particular algebraic structure, called valuation algebra.There are many models of this algebraic structure ranging from probability theory to numerical analysis, relational databases and various classical and non-classical logics. It turns out that many interesting models of valuation algebras may be derived from semiring valued mappings. In this paper we study how valuation algebras are induced by semirings and how the structure of the valuation algebra is related to the algebraic structure of the semiring. In particular, c-semirings with idempotent multiplication induce idempotent valuation algebras and therefore permit particularly efficient architectures for local computation. Also important are semirings whose multiplicative semigroup is embedded in a union of groups. They induce valuation algebras with a partially defined division. For these valuation algebras, the well-known architectures for Bayesian networks apply. We also extend the general computational framework to allow derivation of bounds and approximations, for when exact computation is not feasible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To infect their mammalian hosts, Fasciola hepatica larvae must penetrate and traverse the intestinal wall of the duodenum, move through the peritoneum, and penetrate the liver. After migrating through and feeding on the liver, causing extensive tissue damage, the parasites move to their final niche in the bile ducts where they mature and produce eggs. Here we integrated a transcriptomics and proteomics approach to profile Fasciola secretory proteins that are involved in host-pathogen interactions and to correlate changes in their expression with the migration of the parasite. Prediction of F. hepatica secretory proteins from 14,031 expressed sequence tags (ESTs) available from the Wellcome Trust Sanger Centre using the semiautomated EST2Secretome pipeline showed that the major components of adult parasite secretions are proteolytic enzymes including cathepsin L, cathepsin B, and asparaginyl endopeptidase cysteine proteases as well as novel trypsin-like serine proteases and carboxypeptidases. Proteomics analysis of proteins secreted by infective larvae, immature flukes, and adult F. hepatica showed that these proteases are developmentally regulated and correlate with the passage of the parasite through host tissues and its encounters with different host macromolecules. Proteases such as FhCL3 and cathepsin B have specific functions in larvae activation and intestinal wall penetration, whereas FhCL1, FhCL2, and FhCL5 are required for liver penetration and tissue and blood feeding. Besides proteases, the parasites secrete an array of antioxidants that are also highly regulated according to their migration through host tissues. However, whereas the proteases of F. hepatica are secreted into the parasite gut via a classical endoplasmic reticulum/Golgi pathway, we speculate that the antioxidants, which all lack a signal sequence, are released via a non-classical trans-tegumental pathway.