982 resultados para non-Newtonian fluids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flow of an incompressible non-Newtonian viscous fluid contained between two torsionally oscillating infinite parallel discs is investigated. The two specific cases studied are (i) one disc only oscillates while the other is at rest and (ii) both discs oscillate with the same frequency and amplitude but in opposite directions. Assuming that the amplitude of oscillation,Ω/n, is small and neglecting the squares and higher powers ofΩ/n, the equations of motion have been solved exactly for velocity and pressure satisfying all the boundary conditions. The effect of both positive and negative coefficients of cross-viscosity on the steady components of the flow has been represented graphically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transient boundary layer flow and heat transfer of a viscous incompressible electrically conducting non-Newtonian power-law fluid in a stagnation region of a two-dimensional body in the presence of an applied magnetic field have been studied when the motion is induced impulsively from rest. The nonlinear partial differential equations governing the flow and heat transfer have been solved by the homotopy analysis method and by an implicit finite-difference scheme. For some cases, analytical or approximate solutions have also been obtained. The special interest are the effects of the power-law index, magnetic parameter and the generalized Prandtl number on the surface shear stress and heat transfer rate. In all cases, there is a smooth transition from the transient state to steady state. The shear stress and heat transfer rate at the surface are found to be significantly influenced by the power-law index N except for large time and they show opposite behaviour for steady and unsteady flows. The magnetic field strongly affects the surface shear stress, but its effect on the surface heat transfer rate is comparatively weak except for large time. On the other hand, the generalized Prandtl number exerts strong influence on the surface heat transfer. The skin friction coefficient and the Nusselt number decrease rapidly in a small interval 0 < t* < 1 and reach the steady-state values for t* >= 4. (C) 2010 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flow and heat transfer characteristics of a second-order fluid over a vertical wedge with buoyancy forces have been analysed. The coupled nonlinear partial differential equations governing the nonsimilar mixed convection flow have been solved numerically using Keller box method. The effects of the buoyancy parameter, viscoelastic parameter, mass transfer parameter, pressure gradient parameter, Prandtl number and viscous dissipation parameter on the skin friction and heat transfer have been examined in detail. Particular cases of the present results match exactly with those available in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work. co-current flow characteristics of air/non-Newtonian liquid systems in inclined smooth pipes are studied experimentally and theoretically using transparent tubes of 20, 40 and 60 turn in diameter. Each tube includes two 10 m lone pipe branches connected by a U-bend that is capable of being inclined to any angle, from a completely horizontal to a fully vertical position. The flow rate of each phase is varied over a wide range. The studied flow phenomena are bubbly, plug flow, slug flow, churn flow and annular flow. These are observed and recorded by a high flow. stratified flow. -speed camera over a wide range of operating conditions. The effects of the liquid phase properties, the inclination angle and the pipe diameter on two-phase flow characteristics are systematically studied. The Heywood-Charles model for horizontal flow was modified to accommodate stratified flow in inclined pipes, taking into account the average void fraction and pressure drop of the mixture flow of a gas/non-Newtonian liquid. The pressure drop gradient model of Taitel and Barnea for a gas/Newtonian liquid slug flow was extended to include liquids possessing shear-thinning flow behaviour in inclined pipes. The comparison of the predicted values with the experimental data shows that the models presented here provide a reasonable estimate of the average void fraction and the corresponding pressure drop for the mixture flow of a gas/ non-Newtonian liquid. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lateral migration of neutrally buoyant rigid spheres in two-dimensional unidirectional flows was studied theoretically. The cases of both inertia-induced migration in a Newtonian fluid and normal stress-induced migration in a second-order fluid were considered. Analytical results for the lateral velocities were obtained, and the equilibrium positions and trajectories of the spheres compared favorably with the experimental data available in the literature. The effective viscosity was obtained for a dilute suspension of spheres which were simultaneously undergoing inertia-induced migration and translational Brownian motion in a plane Poiseuille flow. The migration of spheres suspended in a second-order fluid inside a screw extruder was also considered.

The creeping motion of neutrally buoyant concentrically located Newtonian drops through a circular tube was studied experimentally for drops which have an undeformed radius comparable to that of the tube. Both a Newtonian and a viscoelastic suspending fluid were used in order to determine the influence of viscoelasticity. The extra pressure drop due to the presence of the suspended drops, the shape and velocity of the drops, and the streamlines of the flow were obtained for various viscosity ratios, total flow rates, and drop sizes. The results were compared with existing theoretical and experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the application of computational fluid dynamics (CFD) to simulate the macroscopic bulk motion of solder paste ahead of a moving squeegee blade in the stencil printing process during the manufacture of electronic components. The successful outcome of the stencil printing process is dependent on the interaction of numerous process parameters. A better understanding of these parameters is required to determine their relation to print quality and improve guidelines for process optimization. Various modelling techniques have arisen to analyse the flow behaviour of solder paste, including macroscopic studies of the whole mass of paste as well as microstructural analyses of the motion of individual solder particles suspended in the carrier fluid. This work builds on the knowledge gained to date from earlier analytical models and CFD investigations by considering the important non-Newtonian rheological properties of solder pastes which have been neglected in previous macroscopic studies. Pressure and velocity distributions are obtained from both Newtonian and non-Newtonian CFD simulations and evaluated against each other as well as existing established analytical models. Significant differences between the results are observed, which demonstrate the importance of modelling non-Newtonian properties for realistic representation of the flow behaviour of solder paste.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rimming flow on the inner surface of a horizontal rotating cylinder is investigated. Using a scale analysis, a theoretical description is obtained for steady-state non-Newtonian flow. Simple lubrication theory is applied since the Reynolds number is small and the liquid film is thin. Since the Deborah number is very small the flow is viscometric. The shear-thinning number, which characterizes the shear-thinning effect, may be small or large. A general constitutive law for this kind of flow requires only a single function relating shear stress and shear rate that corresponds to a generalized Newtonian liquid. For this case the run-off condition for rimming flow is derived. Provided the run-off condition is satisfied, the existence of a continuous steady-state solution is proved. The rheological models, which show Newtonian behavior at low shear rates with transition to power-law shear thinning at moderate shear rates, are considered. Numerical results are carried out for the Carreau and Ellis models, which exhibit Newtonian behavior near the free surface and power-law behavior near the wall of the rotating cylinder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New protic ionic liquids (PILs) based on the diisopropyl-ethylammonium cation have been synthesized through a simple and atom-economic neutralization reaction between the diisopropyl-ethylamine and selected carboxylic acid. Densities and rheological properties were then measured for two original diisopropyl-ethylammonium-based protic ionic liquids (heptanoate and octanoate) at 298.15 K and atmospheric pressure. The effect of the presence of water or acetonitrile on the measured values was also examined over the whole composition range at 298.15 K and atmospheric pressure. From these values, excess properties were calculated and correlated by using a Redlich-Kister-type equation. Finally, a qualitative analysis of the evolution of studied properties with the alkyl chain length of the anion and with the presence or not of water (or acetonitrile) was performed. From this analysis, it appears that selected PILs and their mixtures with water or acetonitrile have a non-Newtonian shear thickening behavior, and the addition of water or acetonitrile on these PILs increases this phenomena by the formation of aggregates in these media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to develop a novel unstructured simulation approach for injection molding processes described by the Hele-Shaw model. Design/methodology/approach - The scheme involves dual dynamic meshes with active and inactive cells determined from an initial background pointset. The quasi-static pressure solution in each timestep for this evolving unstructured mesh system is approximated using a control volume finite element method formulation coupled to a corresponding modified volume of fluid method. The flow is considered to be isothermal and non-Newtonian. Findings - Supporting numerical tests and performance studies for polystyrene described by Carreau, Cross, Ellis and Power-law fluid models are conducted. Results for the present method are shown to be comparable to those from other methods for both Newtonian fluid and polystyrene fluid injected in different mold geometries. Research limitations/implications - With respect to the methodology, the background pointset infers a mesh that is dynamically reconstructed here, and there are a number of efficiency issues and improvements that would be relevant to industrial applications. For instance, one can use the pointset to construct special bases and invoke a so-called ""meshless"" scheme using the basis. This would require some interesting strategies to deal with the dynamic point enrichment of the moving front that could benefit from the present front treatment strategy. There are also issues related to mass conservation and fill-time errors that might be addressed by introducing suitable projections. The general question of ""rate of convergence"" of these schemes requires analysis. Numerical results here suggest first-order accuracy and are consistent with the approximations made, but theoretical results are not available yet for these methods. Originality/value - This novel unstructured simulation approach involves dual meshes with active and inactive cells determined from an initial background pointset: local active dual patches are constructed ""on-the-fly"" for each ""active point"" to form a dynamic virtual mesh of active elements that evolves with the moving interface.