993 resultados para nitrogen availability
Resumo:
We compared the ability of five strains of the ericoid mycorrhizal fungus Hymenoscyphus ericae to utilise glutamine, ammonium or nitrate at high or low carbon (C) availability. The pattern of intraspecific variation in growth was affected by C availability. When C supply was high, growth differences between strains were explained by the total amount of nitrogen (N) taken up, suggesting variation in uptake kinetics. Under C-limiting conditions, strain differences were linked with their nitrogen use efficiency, implying intraspecific differences in N metabolism. The relationship between growth on glutamine and pH shifts in the media indicated that there was intraspecific variation in glutamine transporters. In addition, the correlation between pH changes and the amount of glutamine-N recovered as ammonium in the media indicated that there were intraspecific variations within the enzymatic pathways involved in glutamine metabolism. Our findings, compared with those of a previous study involving the same ericoid strains, draw attention to the temporal variation in nitrogen source utilisation by ericoid mycorrhizal fungi when maintained in axenic culture.
Resumo:
We investigated how species identity and variation in salinity and nutrient availability influence the hydraulic conductivity of mangroves. Using a fertilization study of two species in Florida, we found that stem hydraulic conductivity expressed on a leaf area basis (K-leaf) was significantly different among species of differing salinity tolerance, but was not significantly altered by enrichment with limiting nutrients. Reviewing data from two additional sites (Panama and Belize), we found an overall pattern of declining leaf-specific hydraulic conductivity (K-leaf) with increasing salinity. Over three sites, a general pattern emerges, indicating that native stem hydraulic conductivity (K-h) and K-leaf are less sensitive to nitrogen (N) fertilization when N limits growth, but more sensitive to phosphorus (P) fertilization when P limits growth. Processes leading to growth enhancement with N fertilization are probably associated with changes in allocation to leaf area and photosynthetic processes, whereas water uptake and transport processes could be more limiting when P limits growth. These findings suggest that whereas salinity and species identity place broad bounds on hydraulic conductivity, the effects of nutrient availability modulate hydraulic conductivity and growth in complex ways.
Resumo:
Sugarcane crop residues ('trash') have the potential to supply nitrogen (N) to crops when they are retained on the soil surface after harvest. Farmers should account for the contribution of this N to crop requirements in order to avoid over-fertilisation. In very wet tropical locations, the climate may increase the rate of trash decomposition as well as the amount of N lost from the soil-plant system due to leaching or denitrification. A field experiment was conducted on Hydrosol and Ferrosol soils in the wet tropics of northern Australia using N-15-labelled trash either applied to the soil surface or incorporated. Labelled urea fertiliser was also applied with unlabelled surface trash. The objective of the experiment was to investigate the contribution of trash to crop N nutrition in wet tropical climates, the timing of N mineralisation from trash, and the retention of trash N in contrasting soils. Less than 6% of the N in trash was recovered in the first crop and the recovery was not affected by trash incorporation. Around 6% of the N in fertiliser was also recovered in the first crop, which was less than previously measured in temperate areas (20-40%). Leaf samples taken at the end of the second crop contined 2-3% of N from trash and fertilizer applied at the beginning of the experiment. Although most N was recovered in the 0-1.5 m soil layer there was some evidence of movement of N below this depth. The results showed that trash supplies N slowly and in small amounts to the succeeding crop in wet tropics sugarcane growing areas regardless of trash placement (on the soil surface or incorporated) or soil type, and so N mineralisation from a single trash blanket is not important for sugarcane production in the wet tropics.
Resumo:
Increased rates of nitrogen fertilizer application lead to increased spikelet sterility. A field experiment was conducted to investigate the effects on engorged pollen production and spikelet sterility, of nitrogen and assimilate availability during microspore development, in two rice cultivars (Doongara and Amaroo) grown under two different water depths. Despite the temperature not being low enough during microspore development to cause spikelet sterility, the number of engorged pollen grains was lower in cv. Doongara than in cv. Amaroo. Nitrogen application decreased the number of engorged pollen grains per anther through increased spikelet density. Nitrogen application increased spikelet sterility as a result of increased panicle density showing pronounced indirect effect of N on spikelet sterility. Engorged pollen number was also closely related (r = -0.636*) to the nitrogen content of the leaf blade, indicating a direct negative effect of plant N status on engorged pollen production. The results suggest that the intrinsic pollen producing ability is the key element in the difference in cold tolerance between the two cultivars, particularly under high N rates. Opening the canopy for increased solar radiation interception by the treated plants increased the level of engorged pollen, indicating the importance of immediate assimilate availability for engorged pollen production. Shading reduced crop growth rate, but did not effect engorged pollen production. There was no effect of variation in assimilates production on spikelet sterility.
Resumo:
Between 1992 and 2000, we sampled 504 randomly chosen locations in theFlorida Keys, Florida, USA, for the elemental content of green leaves of theseagrass Thalassia testudinum. Carbon content ranged from29.4–43.3% (dry weight), nitrogen content from 0.88–3.96%, andphosphorus content from 0.048–0.243%. N and P content of the samples werenot correlated, suggesting that the relative availability of N and P variedacross the sampling region. Spatial pattern in C:N indicated a decrease in Navailability from inshore waters to the reef tract 10 km offshore;in contrast, the pattern in C:P indicated an increase in P availability frominshore waters to the reef tract. The spatial pattern in N:P was used to definea P-limited region of seagrass beds in Florida Bay and near shore, and anN-limited region of seagrass beds offshore. The close juxtaposition ofN–and P-limited regions allows the possibility that N loading from thesuburban Florida Keys could influence the offshore, N-limited seagrass bedswithout impacting the more nearshore, P-limited seagrass beds. Carbonate - Nutrient lim
Resumo:
Patterns of relative nutrient availability in south Florida suggest spatial differences regarding the importance of nitrogen (N) and phosphorus (P) to benthic primary producers. We did a 14-month in situ fertilization experiment to test predictions of N and P limitation in the subtropical nearshore marine waters of the upper Florida Keys. Six sites were divided into two groups (nearshore, offshore) representing the endpoints of an N: P stoichiometric gradient. Twenty-four plots were established at each site with six replicates of each treatment (1N, 1P, 1N1P, control), for a total of 144 experimental plots. The responses of benthic communities to N and P enrichment varied appreciably between nearshore and offshore habitats. Offshore seagrass beds were strongly limited by nitrogen, and nearshore beds were affected by nitrogen and phosphorus. Nutrient addition at offshore sites increased the length and aboveground standing crop of the two seagrasses, Thalassia testudinum and Syringodium filiforme, and growth rates of T. testudinum. Nutrient addition at nearshore sites increased the relative abundance of macroalgae, epiphytes, and sediment microalgae. N limitation of seagrass in this carbonate system was clearly demonstrated. However, added phosphorus was retained in the system more effectively than N, suggesting that phosphorus might have important long-term effects on these benthic communities. The observed species-specific responses to nutrient enrichment underscores the need to monitor all primary producers when addressing questions of nutrient limitation and eutrophication in seagrass communities.
Resumo:
Sandy soils have low nutrient holding capacity and high water conductivity. Consequently, nutrients applied as highly soluble chemical fertilisers are prone to leaching, particularly in heavily irrigated environments such as horticultural soils and golf courses. Amorphous derivatives of kaolin with high cation exchange capacity may be loaded with desired nutrients and applied as controlledrelease fertilisers. Kaolin is an abundant mineral, which can be converted to a meso-porous amorphous derivative (KAD) using facile chemical processes. KAD is currently being used to sequester ammonium from digester effluent in sewage treatment plants in a commercial environment. This material is also known in Australia by the trade name MesoLite. The ammonium-saturated form of KAD may be applied to soils as a nitrogen fertiliser. Up to 7% N can be loaded onto KAD by contacting it with high-ammonia concentration wastewater from sewerage treatment plants. This poster paper demonstrates plant uptake of nitrogen from KAD and compares its efficiency as a fertiliser with NH4SO4. Rye grass was grown in 1kg pots in a glass-house. Nitrogen was applied at a range of rates using NH4SO4 and two KAD materials carrying 7% and 3% nitrogen, respectively. All other nutrients were applied in adequate amounts. All treatments were replicated three times. Plants were harvested after four weeks. Dry mass and N concentrations were determined by standard methods. At all N application rates, ammonium-loaded KAD produced significantly higher plant mass than for NH4SO4. The lower fertiliser effectiveness of NH4SO4 is attributed to possible loss of some N through volatilisation. Of the two KAD types, the material with lower CEC value supported slightly higher plant yields. The KAD materials did not show any adverse effect on availability of trace elements, as evidenced by lack of deficiency symptoms and plant analyses. Clearly, nitrogen loaded on to KAD in the form of ammonium is likely to be protected from leaching, but is still available to plants. These data suggest that KAD-based fertilisers may be suitable substitutes for water soluble N, K and other cation fertilisers for leaching soils.
Resumo:
Nitrous oxide emissions were monitored at three sites over a 2-year period in irrigated cotton fields in Khorezm, Uzbekistan, a region located in the arid deserts of the Aral Sea Basin. The fields were managed using different fertilizer management strategies and irrigation water regimes. N2O emissions varied widely between years, within 1 year throughout the vegetation season, and between the sites. The amount of irrigation water applied, the amount and type of N fertilizer used, and topsoil temperature had the greatest effect on these emissions. Very high N2O emissions of up to 3000 μg N2O-N m−2 h−1 were measured in periods following N-fertilizer application in combination with irrigation events. These “emission pulses” accounted for 80–95% of the total N2O emissions between April and September and varied from 0.9 to 6.5 kg N2O-N ha−1.. Emission factors (EF), uncorrected for background emission, ranged from 0.4% to 2.6% of total N applied, corresponding to an average EF of 1.48% of applied N fertilizer lost as N2O-N. This is in line with the default global average value of 1.25% of applied N used in calculations of N2O emissions by the Intergovernmental Panel on Climate Change. During the emission pulses, which were triggered by high soil moisture and high availability of mineral N, a clear diurnal pattern of N2O emissions was observed, driven by daily changes in topsoil temperature. For these periods, air sampling from 8:00 to 10:00 and from 18:00 to 20:00 was found to best represent the mean daily N2O flux rates. The wet topsoil conditions caused by irrigation favored the production of N2O from NO3− fertilizers, but not from NH4+ fertilizers, thus indicating that denitrification was the main process causing N2O emissions. It is therefore argued that there is scope for reducing N2O emission from irrigated cotton production; i.e. through the exclusive use of NH4+ fertilizers. Advanced application and irrigation techniques such as subsurface fertilizer application, drip irrigation and fertigation may also minimize N2O emission from this regionally dominant agro-ecosystem.
Resumo:
Piggery pond sludge (PPS) was applied, as-collected (Wet PPS) and following stockpiling for 12 months (Stockpiled PPS), to a sandy Sodosol and clay Vertosol at sites on the Darling Downs of Queensland. Laboratory measures of N availability were carried out on unamended and PPS-amended soils to investigate their value in estimating supplementary N needs of crops in Australia's northern grains region. Cumulative net N mineralised from the long-term (30 weeks) leached aerobic incubation was described by a first-order single exponential model. The mineralisation rate constant (0.057/week) was not significantly different between Control and PPS treatments or across soil types, when the amounts of initial mineral N applied in PPS treatments were excluded. Potentially mineralisable N (No) was significantly increased by the application of Wet PPS, and increased with increasing rate of application. Application of Wet PPS significantly increased the total amount of inorganic N leached compared with the Control treatments. Mineral N applied in Wet PPS contributed as much to the total mineral N status of the soil as did that which mineralised over time from organic N. Rates of C02 evolution during 30 weeks of aerobic leached incubation indicated that the Stockpiled PPS was more stabilised (19-28% of applied organic C mineralised) than the WetPPS (35-58% of applied organic C mineralised), due to higher lignin content in the former. Net nitrate-N produced following 12 weeks of aerobic non-leached incubation was highly correlated with net nitrate-N leached during 12 weeks of aerobic incubation (R^2 = 0.96), although it was <60% of the latter in both sandy and clayey soils. Anaerobically mineralisable N determined by waterlogged incubation of laboratory PPS-amended soil samples increased with increasing application rate of Wet PPS. Anaerobically minemlisable N from field-moist soil was well correlated with net N mineralised during 30 weeks of aerobic leached incubation (R^2 =0.90 sandy soil; R^2=0.93 clay soil). In the clay soil, the amount of mineral N produced from all the laboratory incubations was significantly correlated with field-measured nitrate-N in the soil profile (0-1.5 m depth) after 9 months of weed-free fallow following PPS application. In contrast, only anaerobic mineralisable N was significantly correlated with field nitrate-N in the sandy soil. Anaerobic incubation would, therefore, be suitable as a rapid practical test to estimate potentially mineralisable N following applications of different PPS materials in the field.
Resumo:
In agricultural systems which rely on organic sources of nitrogen (N), of which the primary source is biological N fixation (BNF), it is extremely important to use N as efficiently as possible with minimal losses to the environment. The amount of N through BNF should be maximised and the availability of the residual N after legumes should be synchronised to the subsequent plant needs in the crop rotation. Six field experiments in three locations in Finland were conducted in 1994-2006 to determine the productivity and amount of BNF in red clover-grass leys of different ages. The residual effects of the leys for subsequent cereals as well as the N leaching risk were studied by field measurements and by simulation using the CoupModel. N use efficiency (NUE) and N balances were also calculated. The yields of red clover-grass leys were highest in the two-year-old leys (6 700 kg ha-1) under study, but the differences between 2- and 3-year old leys were not high in most cases. BNF (90 kg ha-1 in harvested biomass) correlated strongly with red clover dry matter yield, as the proportion of red clover N derived from the atmosphere (> 85%) was high in our conditions of organically farmed field with low soil mineral N. A red clover content of over 40% in dry matter is targeted to avoid negative N-balances and to gain N for the subsequent crop. Surprisingly, the leys had no significant effect on the yields and N uptake of the two subsequent cereals (winter rye or spring wheat, followed by spring oats). On the other hand, yield and C:N of leys, as well as BNF-N and total-N incorporated into the soil influenced on subsequent cereal yields. NUE of cereals from incorporated ley crop residues was rather high, varying from 30% to 80% (mean 48%). The mineral N content of soil in the profile of 0-90 cm was low, mainly 15-30 kg ha-1. Simulation of N dynamics by CoupModel functioned satisfactorily and is considered a useful tool to estimate N flows in cropping systems relying on organic N sources. Understanding the long-term influence of cultivation history and soil properties on N dynamics remains to be a challenge to further research.
Resumo:
The specific activity of glutamine synthetase (L-glutamate: ammonia ligase, EC 6.3.1.2) in surface grown Aspergillus niger was increased 3-5 fold when grown on L-glutamate or potassium nitrate, compared to the activity obtained on ammonium chloride. The levels of glutamine synthetase was regulated by the availability of nitrogen source like NH4 + , and further, the enzyme is repressed by increasing concentrations of NH4 +. In contrast to other micro-organisms, the Aspergillus niger enzyme was neither specifically inactivated by NH4+ or L-glutamine nor regulated by covalent modification.Glutamine synthetase from Aspergillus niger was purified to homogenity. The native enzyme is octameric with a molecular weight of 385,000±25,000. The enzyme also catalyses Mn2+ or Mg2+-dependent synthetase and Mn2+-dependent transferase activity.Aspergillus niger glutamine synthetase was completely inactivated by two mol of phenylglyoxal and one mol of N-ethylmaleimide with second order rate constants of 3·8 M–1 min–1 and 760 M–1 min–1 respectively. Ligands like Mg. ATP, Mg. ADP, Mg. AMP, L-glutamate NH4+, Mn2+ protected the enzyme against inactivation. The pattern of inactivation and protection afforded by different ligands against N-ethylamaleimide and phenylglyoxal was remarkably similar. These results suggest that metal ATP complex acts as a substrate and interacts with an arginine ressidue at the active site. Further, the metal ion and the free nucleotide probably interact at other sites on the enzyme affecting the catalytic activity.
Resumo:
Fungi have a fundamental role in carbon and nutrient transformations in the acids soils of boreal regions, such as peatlands, where high amounts of carbon (C) and nutrients are stored in peat, the pH is relatively low and the nutrient uptake of trees is highly dependent on mycorrhizae. In this thesis, the aim was to examine nitrogen (N) transformations and the availability of dissolved N compounds in forestry-drained peatlands, to compare the fungal community biomass and structure at various peat N levels, to investigate the growth of ectomycorrhizal fungi with variable P and K availability and to assess how the ectomycorrhizal fungi (ECM) affect N transformations. Both field and laboratory experiments were carried out. The peat N concentration did not affect the soil fungal community structure within a site. Phosphorus (P) and potassium (K) deficiency of the trees as well as the degree of decomposition and dissolved organic nitrogen (DON) concentration of the peat were shown to affect the fungal community structure and biomass of ECMs, highlighting the complexity of the below ground system on drained peatlands. The biomass of extrametrical mycorrhizal mycelia (EMM) was enhanced by P and/or K deficiency of the trees, and ECM biomass in the roots was increased by P deficiency. Thus, PK deficiency in drained peatlands may increase the allocation of C by the tree to ECMs. It was also observed that fungi can alter N mineralization processes in the rhizosphere but variously depending on fungal species and fertility level of peat. Gross N mineralization did not vary but the net N mineralization rate significantly increased along the N gradient in both field and laboratory experiments. Gross N immobilization also significantly increased when the peat N concentration increased. Nitrification was hardly detectable in either field or laboratory experiments. During the growing season, dissolved inorganic N (DIN) fluctuated much more than the relatively stable DON. Special methodological challenges associated with sampling and analysis in microbial studies on peatlands are discussed.