929 resultados para nickel silver
Resumo:
Gold is often considered as an inert material but it has been unequivocally demonstrated that it possesses unique electronic, optical, catalytic and electrocatalytic properties when in a nanostructured form.[1] For the latter the electrochemical behaviour of gold in aqueous media has been widely studied on a plethora of gold samples, including bulk polycrystalline and single-crystal electrodes, nanoparticles, evaporated films as well as electrodeposited nanostructures, particles and thin films.[1b, 2] It is now well-established that the electrochemical behaviour of gold is not as simple as an extended double-layer charging region followed by a monolayer oxide-formation/-removal process. In fact the so-called double-layer region of gold is significantly more complicated and has been investigated with a variety of electrochemical and surface science techniques. Burke and others[3] have demonstrated that significant processes due to the oxidation of low lattice stabilised atoms or clusters of atoms occur in this region at thermally and electrochemically treated electrodes which were confirmed later by Bond[4] to be Faradaic in nature via large-amplitude Fourier transformed ac voltammetric experiments. Supporting evidence for the oxidation of gold in the double-layer region was provided by Bard,[5] who used a surface interrogation mode of scanning electrochemical microscopy to quantify the extent of this process that forms incipient oxides on the surface. These were estimated to be as high as 20% of a monolayer. This correlated with contact electrode resistance measurements,[6] capacitance measurements[7] and also electroreflection techniques...
Resumo:
Bi-2212 thick film on silver tapes are seen as a simple and low cost alternative to high temperature superconducting wires produced by the Powder In Thbe (PIT) technique, particularly in react and wind applications. A rig for the continuous production of Bi-2212 tapes for use in react and wind component manufacture has been developed and commissioned. The rig consists of several sections, each fully automatic, for task specific duties in the production of HTS tape. The major sections are: tape coating, sintering and annealing. High temperature superconducting tapes with engineering critical current densities of 10 kA/cm2 (77 K, self field), and lengths of up to 100 m have been produced using the rig. Properties of the finished tape are discussed and results are presented for current density versus bend radius and applied strain. Depending on tape content and thickness, irreversible strain tirrm varies between 0.04 and 0.1 %. Cyclic bending tests when applied strain does not exceed Eirrm showed negligible reduction in J c along the length of the tape.
Resumo:
The complex [1,2-bis(di-tert-butylphosphanyl)ethane-[kappa]2P,P']diiodidonickel(II), [NiI2(C18H40P2] or (dtbpe-[kappa]2P)NiI2, [dtbpe is 1,2-bis(di-tert-butylphosphanyl)ethane], is bright blue-green in the solid state and in solution, but, contrary to the structure predicted for a blue or green nickel(II) bis(phosphine) complex, it is found to be close to square planar in the solid state. The solution structure is deduced to be similar, because the optical spectra measured in solution and in the solid state contain similar absorptions. In solution at room temperature, no 31P{1H} NMR resonance is observed, but the very small solid-state magnetic moment at temperatures down to 4 K indicates that the weak paramagnetism of this nickel(II) complex can be ascribed to temperature independent paramagnetism, and that the complex has no unpaired electrons. The red [1,2-bis(di-tert-butylphosphanyl)ethane-[kappa]2P,P']dichloridonickel(II), [NiCl2(C18H40P2] or (dtbpe-[kappa]2P)NiCl2, is very close to square planar and very weakly paramagnetic in the solid state and in solution, while the maroon [1,2-bis(di-tert-butylphosphanyl)ethane-[kappa]2P,P']dibromidonickel(II), [NiBr2(C18H40P2] or (dtbpe-[kappa]2P)NiBr2, is isostructural with the diiodide in the solid state, and displays paramagnetism intermediate between that of the dichloride and the diiodide in the solid state and in solution. Density functional calculations demonstrate that distortion from an ideal square plane for these complexes occurs on a flat potential energy surface. The calculations reproduce the observed structures and colours, and explain the trends observed for these and similar complexes. Although theoretical investigation identified magnetic-dipole-allowed excitations that are characteristic for temperature-independent paramagnetism (TIP), theory predicts the molecules to be diamagnetic.
Resumo:
BACKGROUND Silver dressings have been widely and successfully used to prevent cutaneous wounds, including burns, chronic ulcers, dermatitis and other cutaneous conditions, from infection. However, in a few cases, skin discolouration or argyria-like appearances have been reported. This study investigated the level of silver in scar tissue post-burn injury following application of Acticoat, a silver dressing. METHODS A porcine deep dermal partial thickness burn model was used. Burn wounds were treated with this silver dressing until completion of re-epithelialization, and silver levels were measured in a total of 160 scars and normal tissues. RESULTS The mean level of silver in scar tissue covered with silver dressings was 136 microg/g, while the silver level in normal skin was less than 0.747 microg/g. A number of wounds had a slate-grey appearance, and dissection of the scars revealed brown-black pigment mostly in the middle and deep dermis within the scar. The level of silver and the severity of the slate-grey discolouration were correlated with the length of time of the silver dressing application. CONCLUSIONS These results show that silver deposition in cutaneous scar tissue is a common phenomenon, and higher levels of silver deposits and severe skin discolouration are correlated with an increase in the duration of this silver dressing application.
Resumo:
Silver dressings have been widely used to successfully prevent burn wound infection and sepsis. However, a few case studies have reported the functional abnormality and failure of vital organs, possibly caused by silver deposits. The aim of this study was to investigate the serum silver level in the pediatric burn population and also in several internal organs in a porcine burn model after the application of Acticoat. A total of 125 blood samples were collected from 46 pediatric burn patients. Thirty-six patients with a mean of 13.4% TBSA burns had a mean peak serum silver level of 114 microg/L, whereas 10 patients with a mean of 1.85% TBSA burns had an undetectable level of silver (<5.4 microg/L). Overall, serum silver levels were closely related to burn sizes. However, the highest serum silver was 735 microg/L in a 15-month-old toddler with 10% TBSA burns and the second highest was 367 microg/L in a 3-year old with 28% TBSA burns. In a porcine model with 2% TBSA burns, the mean peak silver level was 38 microg/L at 2 to 3 weeks after application of Acticoat and was then significantly reduced to an almost undetectable level at 6 weeks. Of a total of four pigs, silver was detected in all four livers (1.413 microg/g) and all four hearts (0.342 microg/g), three of four kidneys (1.113 microg/g), and two of four brains (0.402 microg/g). This result demonstrated that although variable, the level of serum silver was positively associated with the size of burns, and significant amounts of silver were deposited in internal organs in pigs with only 2% TBSA burns, after application of Acticoat.
Resumo:
Studies of the optical properties and catalytic capabilities of noble metal nanoparticles (NPs), such as gold (Au) and silver (Ag), have formed the basis for the very recent fast expansion of the field of green photocatalysis: photocatalysis utilizing visible and ultraviolet light, a major part of the solar spectrum. The reason for this growth is the recognition that the localised surface plasmon resonance (LSPR) effect of Au NPs and Ag NPs can couple the light flux to the conduction electrons of metal NPs, and the excited electrons and enhanced electric fields in close proximity to the NPs can contribute to converting the solar energy to chemical energy by photon-driven photocatalytic reactions. Previously the LSPR effect of noble metal NPs was utilized almost exclusively to improve the performance of semiconductor photocatalysts (for example, TiO2 and Ag halides), but recently, a conceptual breakthrough was made: studies on light driven reactions catalysed by NPs of Au or Ag on photocatalytically inactive supports (insulating solids with a very wide band gap) have demonstrated that these materials are a class of efficient photocatalysts working by mechanisms distinct from those of semiconducting photocatalysts. There are several reasons for the significant photocatalytic activity of Au and Ag NPs. (1) The conduction electrons of the particles gain the irradiation energy, resulting in high energy electrons at the NP surface which is desirable for activating molecules on the particles for chemical reactions. (2) In such a photocatalysis system, both light harvesting and the catalysing reaction take place on the nanoparticle, and so charge transfer between the NPs and support is not a prerequisite. (3) The density of the conduction electrons at the NP surface is much higher than that at the surface of any semiconductor, and these electrons can drive the reactions on the catalysts. (4) The metal NPs have much better affinity than semiconductors to many reactants, especially organic molecules. Recent progress in photocatalysis using Au and Ag NPs on insulator supports is reviewed. We focus on the mechanism differences between insulator and semiconductor-supported Au and Ag NPs when applied in photocatalytic processes, and the influence of important factors, light intensity and wavelength, in particular estimations of light irradiation contribution, by calculating the apparent activation energies of photo reactions and thermal reactions.
Resumo:
This research introduces a novel dressing for burn wounds, containing silver nanoparticles in hydrogels for infected burn care. The 2-acrylamido-2-methylpropane sulfonic acid sodium salt hydrogels containing silver nanoparticles have been prepared via ultraviolet radiation. The formation of silver nanoparticles was monitored by surface plasmon bands and transmission electron microscopy. The concentration of silver nitrate loaded in the solutions slightly affected the physical properties and mechanical properties of the neat hydrogel. An indirect cytotoxicity study found that none of the hydrogels were toxic to tested cell lines. The measurement of cumulative release of silver indicated that 70%–82% of silver was released within 72 hr. The antibacterial activities of the hydrogels against common burn pathogens were studied and the results showed that 5 mM silver hydrogel had the greatest inhibitory activity. The results support its use as a potential burn wound dressing.
Resumo:
Aim To evaluate the effectiveness of novel nanohybrids, composed of silver nanoparticles and nanoscale silicate platelets, to clear Pseudomonas aeruginosa biofilms. Materials & methods The nanohybrids were manufactured from an in situ reduction of silver salts in the silicate platelet dispersion, and then applied to biofilms in vitro and in vivo. Results In reference to the biocidal effects of gentamycin, the nanohybrids mitigated the spreading of the biofilms, and initiated robust cell death and exfoliation from the superficial layers of the biofilms in vitro. In vivo, the nanohybrids exhibited significant therapeutic effects by eliminating established biofilms from infected corneas and promoting the recovery of corneal integrity. Conclusion All of the evaluations indicate the high potency of the newly developed silver nanoparticle/nanoscale silicate platelet nanohybrids for eliminating biofilms.
Resumo:
Antechinus argentus sp. nov. is currently only known from the plateau at the eastern escarpment of Kroombit Tops National Park, about 400km NNW of Brisbane and 60km SSW of Gladstone, south-east Queensland, Australia. Antechinus flavipes (Waterhouse) is also known from Kroombit Tops NP, 4.5km W of the nearest known population of A. argentus; A. mysticus Baker, Mutton and Van Dyck has yet to be found within Kroombit Tops, but is known from museum specimens taken at Bulburin NP, just 40km ESE, as well as extant populations about 400km to both the south-east and north-west of Kroombit NP. A. argentus can be easily distinguished in the field, having an overall silvery/grey appearance with much paler silver feet and drabber deep greyish-olive rump than A. flavipes, which has distinctive yellow-orange toned feet, rump and tail-base; A. argentus fur is also less coarse than that of A. flavipes. A. argentus has a striking silver-grey head, neck and shoulders, with pale, slightly broken eye-rings, which distinguish it from A. mysticus which has a more subtle greyish-brown head, pale buff dabs of eyeliner and more colourful brownish-yellow rump. Features of the dentary can also be used for identification: A. argentus differs from A. flavipes in having smaller molar teeth, as well as a narrower and smaller skull and from A. mysticus in having on average a narrower snout, smaller skull and dentary lengths and smaller posterior palatal vacuities in the skull. A. argentus is strongly divergent genetically (at mtDNA) from both A. flavipes (9.0–11.2%) and A. mysticus (7.2–7.5%), and forms a very strongly supported clade to the exclusion of all other antechinus species, in both mtDNA and combined (mtDNA and nDNA) phylogenies inferred here. We are yet to make detailed surveys in search of A. argentus from forested areas to the immediate east and north of Kroombit Tops. However, A. mysticus has only been found at these sites in low densities in decades past and not at all in several recent trapping expeditions conducted by the authors. With similar habitat types in close geographic proximity, it is plausible that A. argentus may be found outside Kroombit. Nevertheless, it is striking that from a range of surveys conducted at Kroombit Tops in the last 15 years and intensive surveys by the authors in the last 3 years, totalling more than 5 080 trap nights, just 13 A. argentus have been captured from two sites less than 6 km apart. If this is even close to the true geographic extent of the species, it would possess one of the smallest distributions of an Australian mammal species. With several threats identified, we tentatively recommend that A. argentus be listed as Endangered, pending an exhaustive trapping survey of Kroombit and surrounds.
Resumo:
A set of resistance-type strain sensors has been fabricated from metal-coated carbon nanofiller (CNF)/epoxy composites. Two nanofillers, i.e., multi-walled carbon nanotubes and vapor growth carbon fibers (VGCFs) with nickel, copper and silver coatings were used. The ultrahigh strain sensitivity was observed in these novel sensors as compared to the sensors made from the CNFs without metal-coating, and conventional strain gauges. In terms of gauge factor, the sensor made of VGCFs with silver coating is estimated to be 155, which is around 80 times higher than that in a metal-foil strain gauge. The possible mechanism responsible for the high sensitivity and its dependence with the networks of the CNFs with and without metal-coating and the geometries of the CNFs were thoroughly investigated.
Resumo:
Carbon microcoils (CMCs) have been coated with a nickel-phosphorus (Ni-P) film using an electroless plating process, with sodium hypophosphite as a reducing agent in an alkaline bath. CMC composites have potential applications as microwave absorption materials. The morphology, elemental composition and phases in the coating layer of the CMCs and Ni-coated CMCs were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The effects of process parameters such as pH, temperature and coating time of the plating bath on the phosphorus content and deposition rate of the electroless Ni-P coating were studied. The results revealed that a continuous, uniform and low-phosphorous nickel coating was deposited on the surface of the CMCs for 20 min at pH 9.0, plating bath temperature 70 °C. The as-deposited coatings with approximately 4.5 wt.% phosphorus were found to consist of a mix of nano- and microcrystalline phases. The mean particle size of Ni-P nanoparticles on the outer surface of the CMCs was around 11.9 nm. The deposition rate was found to moderately increase with increasing pH, whereas, the phosphorous content of the deposit exhibited a significant decrease. Moreover, the material of the coating underwent a phase transition between an amorphous and a crystalline structure. The thickness of the deposit and the deposition rate may be controlled through careful variation of the coating time and plating bath temperature.
Resumo:
We report fabrication and optical properties of electrochemically deposited silver nanowires into nanoporous alumina template. A finite element method is used to study plasmonic coupling of dipole emitters with the silver nanowires.
Resumo:
We tested the price linkage, the law of one price (LOP) condition, and the causality of the price linkage between the U.S. and Japanese gold and silver futures markets with consideration of structural breaks in the price series. The LOP condition did not hold for both the gold and silver markets when structural breaks were not considered but it sustained in some periods when it was tested for the break periods. We found from the causality test that the price linkage between the U.S. and Japanese gold and silver futures markets were led by the U.S. market.