534 resultados para neuroimaging


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multislice-computed tomography (MSCT) and magnetic resonance imaging (MRI) are increasingly used for forensic purposes. Based on broad experience in clinical neuroimaging, post-mortem MSCT and MRI were performed in 57 forensic cases with the goal to evaluate the radiological methods concerning their usability for forensic head and brain examination. An experienced clinical radiologist evaluated the imaging data. The results were compared to the autopsy findings that served as the gold standard with regard to common forensic neurotrauma findings such as skull fractures, soft tissue lesions of the scalp, various forms of intracranial hemorrhage or signs of increased brain pressure. The sensitivity of the imaging methods ranged from 100% (e.g., heat-induced alterations, intracranial gas) to zero (e.g., mediobasal impression marks as a sign of increased brain pressure, plaques jaunes). The agreement between MRI and CT was 69%. The radiological methods prevalently failed in the detection of lesions smaller than 3mm of size, whereas they were generally satisfactory concerning the evaluation of intracranial hemorrhage. Due to its advanced 2D and 3D post-processing possibilities, CT in particular possessed certain advantages in comparison with autopsy with regard to forensic reconstruction. MRI showed forensically relevant findings not seen during autopsy in several cases. The partly limited sensitivity of imaging that was observed in this retrospective study was based on several factors: besides general technical limitations it became apparent that clinical radiologists require a sound basic forensic background in order to detect specific signs. Focused teaching sessions will be essential to improve the outcome in future examinations. On the other hand, the autopsy protocols should be further standardized to allow an exact comparison of imaging and autopsy data. In consideration of these facts, MRI and CT have the power to play an important role in future forensic neuropathological examination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY DESIGN: Retrospective 9-year survey. OBJECTIVES: Clinical presentation of acute myelitis syndromes is variable, and neuroimaging and laboratory findings are not specific enough to establish the diagnosis with certainty. We evaluated the spectrum clinical features and paraclinical findings encountered during diagnostic workup and aiding the diagnosis. SETTING: Department of Neurology, Inselspital Bern, Switzerland. MATERIAL: Charts and magnetic resonance imaging (MRI) of 63 patients discharged with the diagnosis of acute transverse myelitis. RESULTS: The diagnosis was supported by abnormal MRI and cerebrospinal fluid (CSF) findings in 52 patients (82.5%) and suspected in the remaining either because of a spinal cord MRI lesion suggestive of myelitis (n=5), or abnormal CSF findings (n=4), or electrophysiological evidence of a spinal cord dysfunction (n=2). Clinical impairment was mild (ASIA D) in the majority. All patients had sensory disturbances, whereas motor deficit and autonomic dysfunction were less frequent. Neurological levels were mainly located in cervical or thoracic dermatomes. Spinal cord lesions were visualized by MRI in 90.4% of the patients and distributed either in the cervical or thoracic cord, or both. Multiple lesions were present in more than half of the patients, and lateral, centromedullary and posterior locations were most common. A high percentage of multiple sclerosis (MS)-typical brain lesions and CSF findings suggested a substantial number of MS-related myelitis in our cohort. CONCLUSION: The diagnostic workup of acute myelitis discloses a broad spectrum of CSF or MRI findings, and may be associated with diagnostic uncertainty due to lack of specific CSF or MRI features, or pathological findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrating evidence from different imaging modalities is important to overcome specific limitations of any given imaging method, such as insensitivity of the EEG to unsynchronized neural events, or the lack of fMRI sensitivity to events of low metabolic demand. Processes that are visible in one modality may be related in a nontrivial way to other processes visible in another modality and insight may only be obtained by integrating both methods through a common analysis. For example, brain activity at rest seems to be at least partly determined by an interaction of cortical rhythms (visible to EEG but not to fMRI) with sub-cortical activity (visible to fMRI, but usually not to EEG without averaging). A combination of EEG and fMRI data during rest may thus be more informative than the sum of two separate analyses in both modalities. Integration is also an important source of converging evidence about specific aspects and general principles of neural functions and their dysfunctions in certain pathologies. This is because not only electrical, but also energetic, biochemical, hemodynamic and metabolic processes characterize neural states and functions, and because brain structure provides crucial constraints upon neural functions. Focusing on multimodal integration of functional data should not distract from the privileged status of the electric field as the primary direct, noninvasive real-time measure of neural transmission. The preceding chapters illustrate how electrical neuroimaging has turned scalp EEG into an imaging modality which directly captures the full temporal dynamics of neural activity in the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A publication entitled “A default mode of brain function” initiated a new way of looking at functional imaging data. In this PET study the authors discussed the often-observed consistent decrease of brain activation in a variety of tasks as compared with the baseline. They suggested that this deactivation is due to a task-induced suspension of a default mode of brain function that is active during rest, i.e. that there exists intrinsic well-organized brain activity during rest in several distinct brain regions. This suggestion led to a large number of imaging studies on the resting state of the brain and to the conclusion that the study of this intrinsic activity is crucial for understanding how the brain works. The fact that the brain is active during rest has been well known from a variety of EEG recordings for a very long time. Different states of the brain in the sleep–wake continuum are characterized by typical patterns of spontaneous oscillations in different frequency ranges and in different brain regions. Best studied are the evolving states during the different sleep stages, but characteristic EEG oscillation patterns have also been well described during awake periods (see Chapter 1 for details). A highly recommended comprehensive review on the brain's default state defined by oscillatory electrical brain activities is provided in the recent book by György Buzsaki, showing how these states can be measured by electrophysiological procedures at the global brain level as well as at the local cellular level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While analysis and interpretation of structural epileptogenic lesion is an essential task for the neuroradiologist in clinical practice, a substantial body of epilepsy research has shown that focal lesions influence brain areas beyond the epileptogenic lesion, across ensembles of functionally and anatomically connected brain areas. In this review article, we aim to provide an overview about altered network compositions in epilepsy, as measured with current advanced neuroimaging techniques to characterize the initiation and spread of epileptic activity in the brain with multimodal noninvasive imaging techniques. We focus on resting-state functional magnetic resonance imaging (MRI) and simultaneous electroencephalography/fMRI, and oppose the findings in idiopathic generalized versus focal epilepsies. These data indicate that circumscribed epileptogenic lesions can have extended effects on many brain systems. Although epileptic seizures may involve various brain areas, seizure activity does not spread diffusely throughout the brain but propagates along specific anatomic pathways that characterize the underlying epilepsy syndrome. Such a functionally oriented approach may help to better understand a range of clinical phenomena such as the type of cognitive impairment, the development of pharmacoresistance, the propagation pathways of seizures, or the success of epilepsy surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Patent foramen ovale (PFO) and cryptogenic stroke are commonly associated but some PFOs are incidental. Specific radiological findings associated with PFO may be more likely to indicate a PFO-related cause. We examined whether specific radiological findings are associated with PFO among subjects with cryptogenic stroke and known PFO status. METHODS We analyzed the Risk of Paradoxical Embolism(RoPE) Study database of subjects with cryptogenic stroke and known PFO status, for associations between PFO and: (1) index stroke seen on imaging, (2) index stroke size, (3) index stroke location, (4) multiple index strokes, and (5) prior stroke on baseline imaging. We also compared imaging with purported high-risk echocardiographic features. RESULTS Subjects (N=2680) were significantly more likely to have a PFO if their index stroke was large (odds ratio [OR], 1.36; P=0.0025), seen on index imaging (OR, 1.53; P=0.003), and superficially located (OR, 1.54; P<0.0001). A prior stroke on baseline imaging was associated with not having a PFO (OR, 0.66; P<0.0001). Finding multiple index strokes was unrelated to PFO status (OR, 1.21; P=0.161). No echocardiographic variables were related to PFO status. CONCLUSIONS This is the largest study to report the radiological characteristics of patients with cryptogenic stroke and known PFO status. Strokes that were large, radiologically apparent, superficially located, or unassociated with prior radiological infarcts were more likely to be PFO-associated than were unapparent, smaller, or deep strokes, and those accompanied by chronic infarcts. There was no association between PFO and multiple acute strokes nor between specific echocardiographic PFO features with neuroimaging findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION The orthographic depth hypothesis (Katz and Feldman, 1983) posits that different reading routes are engaged depending on the type of grapheme/phoneme correspondence of the language being read. Shallow orthographies with consistent grapheme/phoneme correspondences favor encoding via non-lexical pathways, where each grapheme is sequentially mapped to its corresponding phoneme. In contrast, deep orthographies with inconsistent grapheme/phoneme correspondences favor lexical pathways, where phonemes are retrieved from specialized memory structures. This hypothesis, however, lacks compelling empirical support. The aim of the present study was to investigate the impact of orthographic depth on reading route selection using a within-subject design. METHOD We presented the same pseudowords (PWs) to highly proficient bilinguals and manipulated the orthographic depth of PW reading by embedding them among two separated German or French language contexts, implicating respectively, shallow or deep orthography. High density electroencephalography was recorded during the task. RESULTS The topography of the ERPs to identical PWs differed 300-360 ms post-stimulus onset when the PWs were read in different orthographic depth context, indicating distinct brain networks engaged in reading during this time window. The brain sources underlying these topographic effects were located within left inferior frontal (German > French), parietal (French > German) and cingular areas (German > French). CONCLUSION Reading in a shallow context favors non-lexical pathways, reflected in a stronger engagement of frontal phonological areas in the shallow versus the deep orthographic context. In contrast, reading PW in a deep orthographic context recruits less routine non-lexical pathways, reflected in a stronger engagement of visuo-attentional parietal areas in the deep versus shallow orthographic context. These collective results support a modulation of reading route by orthographic depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroimaging (NI) technologies are having increasing impact in the study of complex cognitive and social processes. In this emerging field of social cognitive neuroscience, a central goal should be to increase the understanding of the interaction between the neurobiology of the individual and the environment in which humans develop and function. The study of sex/gender is often a focus for NI research, and may be motivated by a desire to better understand general developmental principles, mental health problems that show female-male disparities, and gendered differences in society. In order to ensure the maximum possible contribution of NI research to these goals, we draw attention to four key principles—overlap, mosaicism, contingency and entanglement—that have emerged from sex/gender research and that should inform NI research design, analysis and interpretation. We discuss the implications of these principles in the form of constructive guidelines and suggestions for researchers, editors, reviewers and science communicators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Why do people take longer to associate the word “love” with outgroup words (incongruent condition) than with ingroup words (congruent condition)? Despite the widespread use of the implicit association test (IAT), it has remained unclear whether this IAT effect is due to additional mental processes in the incongruent condition, or due to longer duration of the same processes. Here, we addressed this previously insoluble issue by assessing the spatiotemporal evolution of brain electrical activity in 83 participants. From stimulus presentation until response production, we identified seven processes. Crucially, all seven processes occurred in the same temporal sequence in both conditions, but participants needed more time to perform one early occurring process (perceptual processing) and one late occurring process (implementing cognitive control to select the motor response) in the incongruent compared with the congruent condition. We also found that the latter process contributed to individual differences in implicit bias. These results advance understanding of the neural mechanics of response time differences in the IAT: They speak against theories that explain the IAT effect as due to additional processes in the incongruent condition and speak in favor of theories that assume a longer duration of specific processes in the incongruent condition. More broadly, our data analysis approach illustrates the potential of electrical neuroimaging to illuminate the temporal organization of mental processes involved in social cognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clinical presentation and neuroimaging findings of children with pseudotumoral hemicerebellitis (PTHC) and Lhermitte-Duclos disease (LDD) may be very similar. The differentiation between these entities, however, is important because their management and prognosis are different. We report on three children with PTHC. For all three children, in the acute situation, the differentiation between PTHC and LDD was challenging. A review of the literature shows that a detailed evaluation of conventional and neuroimaging data may help to differentiate between these two entities. A striated folial pattern, brainstem involvement, and prominent veins surrounding the thickened cerebellar foliae on susceptibility weighted imaging favor LDD, while post-contrast enhancement and an increased choline peak on (1)H-Magnetic resonance spectroscopy suggest PTHC.