936 resultados para neural systems
Resumo:
Objectif : Cette thèse a pour objectif de mieux comprendre l’effet du stress sur la douleur aiguë et chronique. Devis expérimental : 16 patients souffrant de douleur chronique lombalgique et 18 sujets contrôles ont participé à une étude d’imagerie par résonance magnétique (IRM) et ont collecté des échantillons de salive afin de quantifier les niveaux d’hormone de stress (i.e. cortisol) la journée de l’étude (réponse réactive) et durant les sept jours consécutifs suivants (réponse basale). Étude 1 : Une première étude a examiné le lien entre les niveaux de cortisol basal, le volume de l’hippocampe et l’activité cérébrale évoquée par la douleur thermique chez des patients souffrant de douleur chronique et les sujets contrôles. Les résultats révèlent que les patients souffrant de douleur chronique avaient des niveaux de cortisol plus élevés que ceux des sujets contrôles. Chez ces patients, un niveau élevé de cortisol était associé à un plus petit volume de l'hippocampe et à davantage d’activation dans le gyrus parahippocampique antérieure (une région impliquée dans l'anxiété anticipatoire et l'apprentissage associatif). De plus, une analyse de médiation a montré que le niveau de cortisol basal et la force de la réponse parahippocampique explique statistiquement l’association négative entre le volume de l'hippocampe et l'intensité de la douleur chronique. Ces résultats suggèrent que l’activité endocrinienne plus élevée chez les patients ayant un plus petit hippocampe modifie le fonctionnement du complexe hippocampique et contribue à l’intensité de la douleur chronique. Étude 2 : La deuxième étude a évalué la contribution de la réponse de stress réactif aux différences interindividuelles dans la perception de la douleur aiguë chez des patients souffrant de douleur chronique et chez des sujets normaux. Les deux groupes ont montré des augmentations significatives du niveau de cortisol en réponse à des stimulations nocives administrées dans un contexte d’IRM suggérant ainsi que la réactivité de l’axe hypothalamo-hypophyso-surrénalien est préservée chez les patients lombalgiques. De plus, les individus présentant une réponse hormonale de stress plus forte ont rapporté moins de douleur et ont montré une réduction de l'activation cérébrale dans le noyau accumbens, dans le cortex cingulaire antérieur (CCA), le cortex somatosensoriel primaire, et l'insula postérieure. Des analyses de médiation ont indiqué que la douleur liée à l'activité du CCA explique statistiquement la relation entre la réponse de stress et le désagrément de la douleur rapportée par les participants. Enfin, des analyses complémentaires ont révélé que le stress réduit la connectivité fonctionnelle entre le CCA et le tronc cérébral pendant la douleur aiguë. Ces résultats indiquent que le stress réactif module la douleur et contribue à la variabilité interindividuelle de l'activité cérébrale et la réponse affective à la douleur. Discussion : Conjointement, ces études suggèrent dans un premier temps que la douleur chronique peut être exacerbée par une réponse physiologique inadéquate de l'organisme exposé à un stress récurrent, et en un second temps, que le CCA contribuerait à l'analgésie induite par le stress. Sur le plan conceptuel, ces études renforcent le point de vue prédominant suggérant que la douleur chronique induit des changements dans les systèmes cérébraux régissant les fonctions motivationnelles et affective de la douleur.
Resumo:
El receptor ionotrópico de glutamato activado por N-metil-D-aspartato (iGluR-NMDA) es un complejo macromolecular heteromultimérico constituido por entre 3 y 5 subunidades de tres diferentes tipos, a saber: NR1, NR2A-D y NR3A y B. Se ha demostrado su participación activa en prácticamente todos los procesos fisiológicos, patológicos e intermediarios de efectos farmacológicos que ocurren en las células de tejidos excitables, inclusive se ha reportado su presencia en otros tejidos no excitables. En el sistema nervioso central (SNC) participa en los procesos de aprendizaje, memoria, plasticidad, diferenciación, migración de la célula neural y apoptosis. Además, en los eventos de índole farmacológica se ha demostrado su intervención en excitotoxicidad, drogadicción y alcoholismo. Surge entonces la pregunta de cómo un mismo complejo macromolecular puede participar en tantos y tan diversos procesos. La revisión de literatura en la que se demuestra la interacción del iGluR-NMDA con proteínas de señalización, soporte, adaptadoras, moduladoras, de adhesión celular, de citoesqueleto y enzimas reporta un conjunto de más de 160 moléculas que participan en las cascadas que generan las señales a diferentes niveles de interacción y con diferentes sustratos. En este artículo se presenta un modelo predictivo estructural y funcional que permite distinguir, por lo menos, tres rutas diferenciadas de señalización.
Resumo:
The intelligent controlling mechanism of a typical mobile robot is usually a computer system. Research is however now ongoing in which biological neural networks are being cultured and trained to act as the brain of an interactive real world robot – thereby either completely replacing or operating in a cooperative fashion with a computer system. Studying such neural systems can give a distinct insight into biological neural structures and therefore such research has immediate medical implications. The principal aims of the present research are to assess the computational and learning capacity of dissociated cultured neuronal networks with a view to advancing network level processing of artificial neural networks. This will be approached by the creation of an artificial hybrid system (animat) involving closed loop control of a mobile robot by a dissociated culture of rat neurons. This paper details the components of the overall animat closed loop system architecture and reports on the evaluation of the results from preliminary real-life and simulated robot experiments.
Resumo:
The survival of many animals hinges upon their ability to avoid collisions with other animals or objects or to precisely control the timing of collisions. Optical expansion provides a compelling impression of object approach and in principle can provide the basis for judgments of time to collision (TTC) [1]. It has been demonstrated that pigeons [2] and houseflies [3] have neural systems that can initiate rapid coordinated actions on the basis of optical expansion. In the case of humans, the linkage between judgments of TTC and coordinated action has not been established at a cortical level. Using functional magnetic resonance imaging (fMRI), we identified superior-parietal and motor-cortex areas that are selectively active during perceptual TTC judgments, some of which are normally involved in producing reach-to-grasp responses. These activations could not be attributed to actual movement of participants. We demonstrate that networks involved in the computational problem of extracting TTC from expansion information have close correspondence with the sensorimotor systems that would be involved in preparing a timed motor response, such as catching a ball or avoiding collision.
Resumo:
It is usually expected that the intelligent controlling mechanism of a robot is a computer system. Research is however now ongoing in which biological neural networks are being cultured and trained to act as the brain of an interactive real world robot - thereby either completely replacing or operating in a cooperative fashion with a computer system. Studying such neural systems can give a distinct insight into biological neural structures and therefore such research has immediate medical implications. In particular, the use of rodent primary dissociated cultured neuronal networks for the control of mobile `animals' (artificial animals, a contraction of animal and materials) is a novel approach to discovering the computational capabilities of networks of biological neurones. A dissociated culture of this nature requires appropriate embodiment in some form, to enable appropriate development in a controlled environment within which appropriate stimuli may be received via sensory data but ultimate influence over motor actions retained. The principal aims of the present research are to assess the computational and learning capacity of dissociated cultured neuronal networks with a view to advancing network level processing of artificial neural networks. This will be approached by the creation of an artificial hybrid system (animal) involving closed loop control of a mobile robot by a dissociated culture of rat neurons. This 'closed loop' interaction with the environment through both sensing and effecting will enable investigation of its learning capacity This paper details the components of the overall animat closed loop system and reports on the evaluation of the results from the experiments being carried out with regard to robot behaviour.
Resumo:
The usefulness of motor subtypes of delirium is unclear due to inconsistency in subtyping methods and a lack of validation with objective measures of activity. The activity of 40 patients was measured over 24 h with a discrete accelerometer-based activity monitor. The continuous wavelet transform (CWT) with various mother wavelets were applied to accelerometry data from three randomly selected patients with DSM-IV delirium that were readily divided into hyperactive, hypoactive, and mixed motor subtypes. A classification tree used the periods of overall movement as measured by the discrete accelerometer-based monitor as determining factors for which to classify these delirious patients. This data used to create the classification tree were based upon the minimum, maximum, standard deviation, and number of coefficient values, generated over a range of scales by the CWT. The classification tree was subsequently used to define the remaining motoric subtypes. The use of a classification system shows how delirium subtypes can be categorized in relation to overall motoric behavior. The classification system was also implemented to successfully define other patient motoric subtypes. Motor subtypes of delirium defined by observed ward behavior differ in electronically measured activity levels.
Resumo:
Locomoting through the environment typically involves anticipating impending changes in heading trajectory in addition to maintaining the current direction of travel. We explored the neural systems involved in the “far road” and “near road” mechanisms proposed by Land and Horwood (1995) using simulated forward or backward travel where participants were required to gauge their current direction of travel (rather than directly control it). During forward egomotion, the distant road edges provided future path information, which participants used to improve their heading judgments. During backward egomotion, the road edges did not enhance performance because they no longer provided prospective information. This behavioral dissociation was reflected at the neural level, where only simulated forward travel increased activation in a region of the superior parietal lobe and the medial intraparietal sulcus. Providing only near road information during a forward heading judgment task resulted in activation in the motion complex. We propose a complementary role for the posterior parietal cortex and motion complex in detecting future path information and maintaining current lane positioning, respectively. (PsycINFO Database Record (c) 2010 APA, all rights reserved)
Resumo:
Over the last 25years, "mindblindness" (deficits in representing mental states) has been one of the primary explanations behind the hallmark social-communication difficulties in autism spectrum conditions (ASC). However, highlighting neural systems responsible for mindblindness and their relation to variation in social impairments has remained elusive. In this study we show that one of the neural systems responsible for mindblindness in ASC and its relation to social impairments is the right temporo-parietal junction (RTPJ). Twenty-nine adult males with ASC and 33 age and IQ-matched Controls were scanned with fMRI while making reflective mentalizing or physical judgments about themselves or another person. Regions of interest within mentalizing circuitry were examined for between-group differences in activation during mentalizing about self and other and correlations with social symptom severity. RTPJ was the only mentalizing region that responded atypically in ASC. In Controls, RTPJ was selectively more responsive to mentalizing than physical judgments. This selectivity for mentalizing was not apparent in ASC and generalized across both self and other. Selectivity of RTPJ for mentalizing was also associated with the degree of reciprocal social impairment in ASC. These results lend support to the idea that RTPJ is one important neural system behind mindblindness in ASC. Understanding the contribution of RTPJ in conjunction with other neural systems responsible for other component processes involved in social cognition will be illuminating in fully explaining the hallmark social-communication difficulties of autism.
Resumo:
In order to harness the computational capacity of dissociated cultured neuronal networks, it is necessary to understand neuronal dynamics and connectivity on a mesoscopic scale. To this end, this paper uncovers dynamic spatiotemporal patterns emerging from electrically stimulated neuronal cultures using hidden Markov models (HMMs) to characterize multi-channel spike trains as a progression of patterns of underlying states of neuronal activity. However, experimentation aimed at optimal choice of parameters for such models is essential and results are reported in detail. Results derived from ensemble neuronal data revealed highly repeatable patterns of state transitions in the order of milliseconds in response to probing stimuli.
Resumo:
This paper provides some additional evidence in support of the hypothesis that robot therapies are clinically beneficial in neurorehabilitation. Although only 4 subjects were included in the study, the design of the intervention and the measures were done so as to minimise bias. The results are presented as single case studies, and can only be interpreted as such due to the study size. The intensity of intervention was 16 hours and the therapy philosophy (based on Carr and Shepherd) was that coordinated movements are preferable to joint based therapies, and that coordinating distal movements (in this case grasps) helps not only to recover function in these areas, but has greater value since the results are immediately transferable to daily skills such as reach and grasp movements.
Resumo:
The increase in incidence and prevalence of neurodegenerative diseases highlights the need for a more comprehensive understanding of how food components may affect neural systems. In particular, flavonoids have been recognized as promising agents capable of influencing different aspects of synaptic plasticity resulting in improvements in memory and learning in both animals and humans. Our previous studies highlight the efficacy of flavonoids in reversing memory impairments in aged rats, yet little is known about the effects of these compounds in healthy animals, particularly with respect to the molecular mechanisms by which flavonoids might alter the underlying synaptic modifications responsible for behavioral changes. We demonstrate that a 3-week intervention with two dietary doses of flavonoids (Dose I: 8.7 mg/day and Dose II: 17.4 mg/day) facilitates spatial memory acquisition and consolidation (24 recall) (p < 0.05) in young healthy rats. We show for the first time that these behavioral improvements are linked to increased levels in the polysialylated form of the neural adhesion molecule (PSA-NCAM) in the dentate gyrus (DG) of the hippocampus, which is known to be required for the establishment of durable memories. We observed parallel increases in hippocampal NMDA receptors containing the NR2B subunit for both 8.7 mg/day (p < 0.05) and 17.4 mg/day (p < 0.001) doses, suggesting an enhancement of glutamate signaling following flavonoid intervention. This is further strengthened by the simultaneous modulation of hippocampal ERK/CREB/BDNF signaling and the activation of the Akt/mTOR/Arc pathway, which are crucial in inducing changes in the strength of hippocampal synaptic connections that underlie learning. Collectively, the present data supports a new role for PSA-NCAM and NMDA-NR2B receptor on flavonoid-induced improvements in learning and memory, contributing further to the growing body of evidence suggesting beneficial effects of flavonoids in cognition and brain health.
Resumo:
A fully automated and online artifact removal method for the electroencephalogram (EEG) is developed for use in brain-computer interfacing. The method (FORCe) is based upon a novel combination of wavelet decomposition, independent component analysis, and thresholding. FORCe is able to operate on a small channel set during online EEG acquisition and does not require additional signals (e.g. electrooculogram signals). Evaluation of FORCe is performed offline on EEG recorded from 13 BCI particpants with cerebral palsy (CP) and online with three healthy participants. The method outperforms the state-of the-art automated artifact removal methods Lagged auto-mutual information clustering (LAMIC) and Fully automated statistical thresholding (FASTER), and is able to remove a wide range of artifact types including blink, electromyogram (EMG), and electrooculogram (EOG) artifacts.
Resumo:
We assess the corticomuscular coherence (CMC) of the contralateral primary motor cortex and the hand muscles during a finger force-tracking task and explore whether the pattern of finger coordination has an impact on the CMC level. Six healthy subjects (three men and three women) were recruited to conduct the force-tracking tasks comprising two finger patterns, i.e., natural combination of index and middle fingers and unnatural combination of index and middle fingers (i.e., simultaneously producing equal force strength in index and middle finger). During the conducting of the tasks with right index and middle finger, MEG and sEMG signals were recorded from left primary motor cortex (M1) and right flexor digitorum superficialis (FDS), respectively; the contralateral CMC was calculated to assess the neuromuscular interaction. Finger force-tracking tasks of Common-IM only induce beta-band CMC, whereas Uncommon-IM tasks produce CMC in both beta and low-gamma band. Compared to the force-tracking tasks of Common-IM, the Uncommon-IM task is associated with the most intensive contralateral CMC. Our study demonstrated that the pattern of finger coordination had significant impact on the CMC between the contralateral M1 and hand muscles, and more corticomuscular interaction was necessary for unnaturally coordinated finger activities to regulate the fixed neural drive of hand muscles.