992 resultados para neural architecture
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
A correlação estratigráfica busca a determinação da continuidade lateral das rochas, ou a equivalência espacial entre unidades litológicas em subsuperfície, a partir de informações geológico-geofísicas oriundas de poços tubulares, que atravessam estas rochas. Normalmente, mas não exclusivamente, a correlação estratigráfica é realizada a partir das propriedades físicas registradas nos perfis geofísicos de poço. Neste caso, busca-se a equivalência litológica a partir da equivalência entre as propriedades físicas, medidas nos vários poços de um campo petrolífero. A técnica da correlação estratigráfica com perfis geofísicos de poço não é uma atividade trivial e sim, sujeita a inúmeras possibilidades de uma errônea interpretação da disposição geométrica ou da continuidade lateral das rochas em subsuperfície, em função da variabilidade geológica e da ambigüidade das respostas das ferramentas. Logo, é recomendável a utilização de um grande número de perfis de um mesmo poço, para uma melhor interpretação. A correlação estratigráfica é fundamental para o engenheiro de reservatório ou o geólogo, pois a partir da mesma, é possível a definição de estratégias de explotação de um campo petrolífero e a interpretação das continuidades hidráulicas dos reservatórios, bem como auxílio para a construção do modelo geológico para os reservatórios, a partir da interpretação do comportamento estrutural das diversas camadas em subsuperfície. Este trabalho apresenta um método de automação das atividades manuais envolvidas na correlação estratigráfica, com a utilização de vários perfis geofísicos de poço, através de uma arquitetura de rede neural artificial multicamadas, treinada com o algoritmo de retropropagação do erro. A correlação estratigráfica, obtida a partir da rede neural artificial, possibilita o transporte da informação geológica do datum de correlação ao longo do campo, possibilitando ao intérprete, uma visão espacial do comportamento do reservatório e a simulação dos possíveis paleoambientes. Com a metodologia aqui apresentada foi possível a construção automática de um bloco diagrama, mostrando a disposição espacial de uma camada argilosa, utilizando-se os perfis de Raio Gama (RG), Volume de Argila (Vsh), Densidade (ρb) e de Porosidade Neutrônica (φn) selecionados em cinco poços da região do Lago Maracaibo, na Venezuela.
Resumo:
As redes neurais artificiais têm provado serem uma poderosa técnica na resolução de uma grande variedade de problemas de otimização. Nesta dissertação é desenvolvida uma nova rede neural, tipo recorrente, sem realimentação (self-feedback loops) e sem neurônios ocultos, para o processamento do sinal sísmico, para fornecer a posição temporal, a polaridade e as amplitudes estimadas dos refletores sísmicos, representadas pelos seus coeficientes de reflexão. A principal característica dessa nova rede neural consiste no tipo de função de ativação utilizada, a qual permite três possíveis estados para o neurônio. Busca-se estimar a posição dos refletores sísmicos e reproduzir as verdadeiras polaridades desses refletores. A idéia básica desse novo tipo de rede, aqui denominada rede neural discreta (RND), é relacionar uma função objeto, que descreve o problema geofísico, com a função de Liapunov, que descreve a dinâmica da rede neural. Deste modo, a dinâmica da rede leva a uma minimização local da sua função de Liapunov e consequentemente leva a uma minimização da função objeto. Assim, com uma codificação conveniente do sinal de saída da rede tem-se uma solução do problema geofísico. A avaliação operacional da arquitetura desta rede neural artificial é realizada em dados sintéticos gerados através do modelo convolucional simples e da teoria do raio. A razão é para explicar o comportamento da rede com dados contaminados por ruído, e diante de pulsos fonte de fases mínima, máxima e misturada.
Identificação automática das primeiras quebras em traços sísmicos por meio de uma rede neural direta
Resumo:
Apesar do avanço tecnológico ocorrido na prospecção sísmica, com a rotina dos levantamentos 2D e 3D, e o significativo aumento na quantidade de dados, a identificação dos tempos de chegada da onda sísmica direta (primeira quebra), que se propaga diretamente do ponto de tiro até a posição dos arranjos de geofones, permanece ainda dependente da avaliação visual do intérprete sísmico. O objetivo desta dissertação, insere-se no processamento sísmico com o intuito de buscar um método eficiente, tal que possibilite a simulação computacional do comportamento visual do intérprete sísmico, através da automação dos processos de tomada de decisão envolvidos na identificação das primeiras quebras em um traço sísmico. Visando, em última análise, preservar o conhecimento intuitivo do intérprete para os casos complexos, nos quais o seu conhecimento será, efetivamente, melhor aproveitado. Recentes descobertas na tecnologia neurocomputacional produziram técnicas que possibilitam a simulação dos aspectos qualitativos envolvidos nos processos visuais de identificação ou interpretação sísmica, com qualidade e aceitabilidade dos resultados. As redes neurais artificiais são uma implementação da tecnologia neurocomputacional e foram, inicialmente, desenvolvidas por neurobiologistas como modelos computacionais do sistema nervoso humano. Elas diferem das técnicas computacionais convencionais pela sua habilidade em adaptar-se ou aprender através de uma repetitiva exposição a exemplos, pela sua tolerância à falta de alguns dos componentes dos dados e pela sua robustez no tratamento com dados contaminados por ruído. O método aqui apresentado baseia-se na aplicação da técnica das redes neurais artificiais para a identificação das primeiras quebras nos traços sísmicos, a partir do estabelecimento de uma conveniente arquitetura para a rede neural artificial do tipo direta, treinada com o algoritmo da retro-propagação do erro. A rede neural artificial é entendida aqui como uma simulação computacional do processo intuitivo de tomada de decisão realizado pelo intérprete sísmico para a identificação das primeiras quebras nos traços sísmicos. A aplicabilidade, eficiência e limitações desta abordagem serão avaliadas em dados sintéticos obtidos a partir da teoria do raio.
Resumo:
Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV–Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV–Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 105 ± 1.90 105 cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV–VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.
Resumo:
Neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements that are shown to be extremely effective in computation. This paper presents an architecture of recurrent neural networks for solving the N-Queens problem. More specifically, a modified Hopfield network is developed and its internal parameters are explicitly computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points, which represent a solution of the considered problem. The network is shown to be completely stable and globally convergent to the solutions of the N-Queens problem. A fuzzy logic controller is also incorporated in the network to minimize convergence time. Simulation results are presented to validate the proposed approach.
Resumo:
This thesis presents a new Artificial Neural Network (ANN) able to predict at once the main parameters representative of the wave-structure interaction processes, i.e. the wave overtopping discharge, the wave transmission coefficient and the wave reflection coefficient. The new ANN has been specifically developed in order to provide managers and scientists with a tool that can be efficiently used for design purposes. The development of this ANN started with the preparation of a new extended and homogeneous database that collects all the available tests reporting at least one of the three parameters, for a total amount of 16’165 data. The variety of structure types and wave attack conditions in the database includes smooth, rock and armour unit slopes, berm breakwaters, vertical walls, low crested structures, oblique wave attacks. Some of the existing ANNs were compared and improved, leading to the selection of a final ANN, whose architecture was optimized through an in-depth sensitivity analysis to the training parameters of the ANN. Each of the selected 15 input parameters represents a physical aspect of the wave-structure interaction process, describing the wave attack (wave steepness and obliquity, breaking and shoaling factors), the structure geometry (submergence, straight or non-straight slope, with or without berm or toe, presence or not of a crown wall), or the structure type (smooth or covered by an armour layer, with permeable or impermeable core). The advanced ANN here proposed provides accurate predictions for all the three parameters, and demonstrates to overcome the limits imposed by the traditional formulae and approach adopted so far by some of the existing ANNs. The possibility to adopt just one model to obtain a handy and accurate evaluation of the overall performance of a coastal or harbor structure represents the most important and exportable result of the work.
Resumo:
Quantitative characterisation of carotid atherosclerosis and classification into symptomatic or asymptomatic is crucial in planning optimal treatment of atheromatous plaque. The computer-aided diagnosis (CAD) system described in this paper can analyse ultrasound (US) images of carotid artery and classify them into symptomatic or asymptomatic based on their echogenicity characteristics. The CAD system consists of three modules: a) the feature extraction module, where first-order statistical (FOS) features and Laws' texture energy can be estimated, b) the dimensionality reduction module, where the number of features can be reduced using analysis of variance (ANOVA), and c) the classifier module consisting of a neural network (NN) trained by a novel hybrid method based on genetic algorithms (GAs) along with the back propagation algorithm. The hybrid method is able to select the most robust features, to adjust automatically the NN architecture and to optimise the classification performance. The performance is measured by the accuracy, sensitivity, specificity and the area under the receiver-operating characteristic (ROC) curve. The CAD design and development is based on images from 54 symptomatic and 54 asymptomatic plaques. This study demonstrates the ability of a CAD system based on US image analysis and a hybrid trained NN to identify atheromatous plaques at high risk of stroke.
Resumo:
The fuzzy min–max neural network classifier is a supervised learning method. This classifier takes the hybrid neural networks and fuzzy systems approach. All input variables in the network are required to correspond to continuously valued variables, and this can be a significant constraint in many real-world situations where there are not only quantitative but also categorical data. The usual way of dealing with this type of variables is to replace the categorical by numerical values and treat them as if they were continuously valued. But this method, implicitly defines a possibly unsuitable metric for the categories. A number of different procedures have been proposed to tackle the problem. In this article, we present a new method. The procedure extends the fuzzy min–max neural network input to categorical variables by introducing new fuzzy sets, a new operation, and a new architecture. This provides for greater flexibility and wider application. The proposed method is then applied to missing data imputation in voting intention polls. The micro data—the set of the respondents’ individual answers to the questions—of this type of poll are especially suited for evaluating the method since they include a large number of numerical and categorical attributes.
Resumo:
There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson’s fuzzy min-max neural networks where the input variables for learning and classification are just numerical. The proposed method extends the input to categorical variables by introducing new fuzzy sets, a new operation and a new architecture. The procedure is tested and compared with others using opinion poll data.
Resumo:
Self-consciousness implies not only self or group recognition, but also real knowledge of one’s own identity. Self-consciousness is only possible if an individual is intelligent enough to formulate an abstract self-representation. Moreover, it necessarily entails the capability of referencing and using this elf-representation in connection with other cognitive features, such as inference, and the anticipation of the consequences of both one’s own and other individuals’ acts. In this paper, a cognitive architecture for self-consciousness is proposed. This cognitive architecture includes several modules: abstraction, self-representation, other individuals'representation, decision and action modules. It includes a learning process of self-representation by direct (self-experience based) and observational learning (based on the observation of other individuals). For model implementation a new approach is taken using Modular Artificial Neural Networks (MANN). For model testing, a virtual environment has been implemented. This virtual environment can be described as a holonic system or holarchy, meaning that it is composed of autonomous entities that behave both as a whole and as part of a greater whole. The system is composed of a certain number of holons interacting. These holons are equipped with cognitive features, such as sensory perception, and a simplified model of personality and self-representation. We explain holons’ cognitive architecture that enables dynamic self-representation. We analyse the effect of holon interaction, focusing on the evolution of the holon’s abstract self-representation. Finally, the results are explained and analysed and conclusions drawn.
Resumo:
Social behaviour is mainly based on swarm colonies, in which each individual shares its knowledge about the environment with other individuals to get optimal solutions. Such co-operative model differs from competitive models in the way that individuals die and are born by combining information of alive ones. This paper presents the particle swarm optimization with differential evolution algorithm in order to train a neural network instead the classic back propagation algorithm. The performance of a neural network for particular problems is critically dependant on the choice of the processing elements, the net architecture and the learning algorithm. This work is focused in the development of methods for the evolutionary design of artificial neural networks. This paper focuses in optimizing the topology and structure of connectivity for these networks.
Resumo:
This paper presents some ideas about a new neural network architecture that can be compared to a Taylor analysis when dealing with patterns. Such architecture is based on lineal activation functions with an axo-axonic architecture. A biological axo-axonic connection between two neurons is defined as the weight in a connection in given by the output of another third neuron. This idea can be implemented in the so called Enhanced Neural Networks in which two Multilayer Perceptrons are used; the first one will output the weights that the second MLP uses to computed the desired output. This kind of neural network has universal approximation properties even with lineal activation functions. There exists a clear difference between cooperative and competitive strategies. The former ones are based on the swarm colonies, in which all individuals share its knowledge about the goal in order to pass such information to other individuals to get optimum solution. The latter ones are based on genetic models, that is, individuals can die and new individuals are created combining information of alive one; or are based on molecular/celular behaviour passing information from one structure to another. A swarm-based model is applied to obtain the Neural Network, training the net with a Particle Swarm algorithm.